Structural and Mechanistic Basis of PAM-Dependent Spacer Acquisition in CRISPR-Cas Systems

被引:200
|
作者
Wang, Jiuyu [1 ,2 ]
Li, Jiazhi [1 ,2 ,3 ]
Zhao, Hongtu [1 ,2 ,3 ]
Sheng, Gang [1 ,2 ]
Wang, Min [1 ,2 ]
Yin, Maolu [1 ,2 ,3 ]
Wang, Yanli [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Biophys, Key Lab RNA Biol, Beijing 100101, Peoples R China
[2] Chinese Acad Sci, Inst Biophys, Beijing Key Lab Noncoding RNA, Beijing 100101, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
关键词
SHORT PALINDROMIC REPEATS; ESCHERICHIA-COLI; ADAPTIVE IMMUNITY; STREPTOCOCCUS-THERMOPHILUS; DNA; PROTEIN; ADAPTATION; PROKARYOTES; DEFENSE; ENDONUCLEASE;
D O I
10.1016/j.cell.2015.10.008
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Bacteria acquire memory of viral invaders by incorporating invasive DNA sequence elements into the host CRISPR locus, generating a new spacer within the CRISPR array. We report on the structures of Cas1-Cas2-dual-forked DNA complexes in an effort toward understanding how the protospacer is sampled prior to insertion into the CRISPR locus. Our study reveals a protospacer DNA comprising a 23-bp duplex bracketed by tyrosine residues, together with anchored flanking 30 overhang segments. The PAM-complementary sequence in the 30 overhang is recognized by the Cas1a catalytic subunits in a base-specific manner, and subsequent cleavage at positions 5 nt from the duplex boundary generates a 33-nt DNA intermediate that is incorporated into the CRISPR array via a cut-and-paste mechanism. Upon protospacer binding, Cas1-Cas2 undergoes a significant conformational change, generating a flat surface conducive to proper protospacer recognition. Here, our study provides important structure-based mechanistic insights into PAM-dependent spacer acquisition.
引用
收藏
页码:840 / 853
页数:14
相关论文
共 50 条
  • [1] Unravelling the structural and mechanistic basis of CRISPR-Cas systems
    van der Oost, John
    Westra, Edze R.
    Jackson, Ryan N.
    Wiedenheft, Blake
    [J]. NATURE REVIEWS MICROBIOLOGY, 2014, 12 (07) : 479 - 492
  • [2] Molecular mechanisms of CRISPR-Cas spacer acquisition
    McGinn, Jon
    Marraffini, Luciano A.
    [J]. NATURE REVIEWS MICROBIOLOGY, 2019, 17 (01) : 7 - 12
  • [3] Casposase structure and the mechanistic link between DNA transposition and spacer acquisition by CRISPR-Cas
    Hickman, Alison B.
    Kailasan, Shweta
    Genzor, Pavol
    Haase, Astrid D.
    Dyda, Fred
    [J]. ELIFE, 2020, 9
  • [4] Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease
    Carolin Anders
    Ole Niewoehner
    Alessia Duerst
    Martin Jinek
    [J]. Nature, 2014, 513 : 569 - 573
  • [5] Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease
    Anders, Carolin
    Niewoehner, Ole
    Duerst, Alessia
    Jinek, Martin
    [J]. NATURE, 2014, 513 (7519) : 569 - +
  • [6] PAM-Dependent Target DNA Recognition and Cleavage by C2c1 CRISPR-Cas Endonuclease
    Yang, Hui
    Gao, Pu
    Rajashankar, Kanagalaghatta R.
    Patel, Dinshaw J.
    [J]. CELL, 2016, 167 (07) : 1814 - +
  • [7] Unravelling the structural and mechanistic basis of CRISPR–Cas systems
    John van der Oost
    Edze R. Westra
    Ryan N. Jackson
    Blake Wiedenheft
    [J]. Nature Reviews Microbiology, 2014, 12 : 479 - 492
  • [8] Mechanism for Cas4-assisted directional spacer acquisition in CRISPR-Cas
    Hu, Chunyi
    Almendros, Cristobal
    Nam, Ki Hyun
    Costa, Ana Rita
    Vink, Jochem N. A.
    Haagsma, Anna C.
    Bagde, Saket R.
    Brouns, Stan J. J.
    Ke, Ailong
    [J]. NATURE, 2021, 598 (7881) : 515 - +
  • [9] The structural biology of CRISPR-Cas systems
    Jiang, Fuguo
    Doudna, Jennifer A.
    [J]. CURRENT OPINION IN STRUCTURAL BIOLOGY, 2015, 30 : 100 - 111
  • [10] In Silico Processing of the Complete CRISPR-Cas Spacer Space for Identification of PAM Sequences
    Mendoza, Brian J.
    Trinh, Cong T.
    [J]. BIOTECHNOLOGY JOURNAL, 2018, 13 (09)