Casposase structure and the mechanistic link between DNA transposition and spacer acquisition by CRISPR-Cas

被引:15
|
作者
Hickman, Alison B. [1 ]
Kailasan, Shweta [1 ,3 ]
Genzor, Pavol [2 ]
Haase, Astrid D. [2 ]
Dyda, Fred [1 ]
机构
[1] NIDDK, Mol Biol Lab, NIH, Bethesda, MD 20892 USA
[2] NIDDK, Lab Cell & Mol Biol, NIH, Bethesda, MD 20892 USA
[3] Integrated BioTherapeut Inc, Rockville, MD USA
来源
ELIFE | 2020年 / 9卷
关键词
ADAPTATION; INTEGRATION; SYSTEMS; PROTEIN; SITE; TRANSPOSASES; IMMUNITY; ELEMENTS; ORIGIN;
D O I
10.7554/eLife.50004
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Key to CRISPR-Cas adaptive immunity is maintaining an ongoing record of invading nucleic acids, a process carried out by the Cas1-Cas2 complex that integrates short segments of foreign genetic material (spacers) into the CRISPR locus. It is hypothesized that Cas1 evolved from casposases, a novel class of transposases. We show here that the Methanosarcina mazei casposase can integrate varied forms of the casposon end in vitro, and recapitulates several properties of CRISPR-Cas integrases including site-specificity. The X-ray structure of the casposase bound to DNA representing the product of integration reveals a tetramer with target DNA bound snugly between two dimers in which single-stranded casposon end binding resembles that of spacer 3'overhangs. The differences between transposase and CRISPR-Cas integrase are largely architectural, and it appears that evolutionary change involved changes in protein-protein interactions to favor Cas2 binding over tetramerization; this in turn led to preferred integration of single spacers over two transposon ends.
引用
收藏
页数:26
相关论文
共 50 条
  • [1] Molecular mechanisms of CRISPR-Cas spacer acquisition
    McGinn, Jon
    Marraffini, Luciano A.
    [J]. NATURE REVIEWS MICROBIOLOGY, 2019, 17 (01) : 7 - 12
  • [2] Structural and Mechanistic Basis of PAM-Dependent Spacer Acquisition in CRISPR-Cas Systems
    Wang, Jiuyu
    Li, Jiazhi
    Zhao, Hongtu
    Sheng, Gang
    Wang, Min
    Yin, Maolu
    Wang, Yanli
    [J]. CELL, 2015, 163 (04) : 840 - 853
  • [3] Mechanism for Cas4-assisted directional spacer acquisition in CRISPR-Cas
    Hu, Chunyi
    Almendros, Cristobal
    Nam, Ki Hyun
    Costa, Ana Rita
    Vink, Jochem N. A.
    Haagsma, Anna C.
    Bagde, Saket R.
    Brouns, Stan J. J.
    Ke, Ailong
    [J]. NATURE, 2021, 598 (7881) : 515 - +
  • [4] Recording mobile DNA in the gut microbiota using an Escherichia coli CRISPR-Cas spacer acquisition platform
    Christian Munck
    Ravi U. Sheth
    Daniel E. Freedberg
    Harris H. Wang
    [J]. Nature Communications, 11
  • [5] Recording mobile DNA in the gut microbiota using an Escherichia coli CRISPR-Cas spacer acquisition platform
    Munck, Christian
    Sheth, Ravi U.
    Freedberg, Daniel E.
    Wang, Harris H.
    [J]. NATURE COMMUNICATIONS, 2020, 11 (01)
  • [6] Unique properties of spacer acquisition by the type III-A CRISPR-Cas system
    Zhang, Xinfu
    Garrett, Sandra
    Graveley, Brenton R.
    Terns, Michael P.
    [J]. NUCLEIC ACIDS RESEARCH, 2022, 50 (03) : 1562 - 1582
  • [7] Integrase-mediated spacer acquisition during CRISPR-Cas adaptive immunity
    Nunez, James K.
    Lee, Amy S. Y.
    Engelman, Alan
    Doudna, Jennifer A.
    [J]. NATURE, 2015, 519 (7542) : 193 - +
  • [8] Structure of the DNA-Bound Spacer Capture Complex of a Type II CRISPR-Cas System
    Wilkinson, Martin
    Drabavicius, Gediminas
    Silanskas, Arunas
    Gasiunas, Giedrius
    Siksnys, Virginijus
    Wigley, Dale B.
    [J]. MOLECULAR CELL, 2019, 75 (01) : 90 - +
  • [9] Bacteriostatic antibiotics promote CRISPR-Cas adaptive immunity by enabling increased spacer acquisition
    Dimitriu, Tatiana
    Kurilovich, Elena
    Lapinska, Urszula
    Severinov, Konstantin
    Pagliara, Stefano
    Szczelkun, Mark D.
    Westra, Edze R.
    [J]. CELL HOST & MICROBE, 2022, 30 (01) : 31 - +
  • [10] Imprecise Spacer Acquisition Generates CRISPR-Cas Immune Diversity through Primed Adaptation
    Jackson, Simon A.
    Birkholz, Nils
    Malone, Lucia M.
    Fineran, Peter C.
    [J]. CELL HOST & MICROBE, 2019, 25 (02) : 250 - +