Bacteriostatic antibiotics promote CRISPR-Cas adaptive immunity by enabling increased spacer acquisition

被引:25
|
作者
Dimitriu, Tatiana [1 ]
Kurilovich, Elena [2 ]
Lapinska, Urszula [3 ]
Severinov, Konstantin [2 ,4 ,5 ,6 ]
Pagliara, Stefano [3 ]
Szczelkun, Mark D. [7 ]
Westra, Edze R. [1 ]
机构
[1] Univ Exeter, ESI, Biosci, Penryn TR10 9FE, England
[2] Skolkovo Inst Sci & Technol, Ctr Life Sci, Moscow 143028, Russia
[3] Univ Exeter, Living Syst Inst & Biosci, Exeter EX4 4QD, Devon, England
[4] Waksman Inst Microbiol, Piscataway, NJ 08854 USA
[5] Russian Acad Sci, Inst Mol Genet, Moscow 119334, Russia
[6] Russian Acad Sci, Ctr Precis Genome Editing & Genet Technol Biomed, Inst Gene Biol, Moscow 119334, Russia
[7] Univ Bristol, Sch Biochem, DNA Prot Interact Unit, Bristol BS8 1TD, Avon, England
基金
俄罗斯科学基金会; 欧洲研究理事会;
关键词
QUORUM SENSING CONTROLS; ESCHERICHIA-COLI; BACTERIOPHAGE-T4; DEVELOPMENT; PSEUDOMONAS; GROWTH; RESISTANCE; EVOLUTION; BACTERIA; SYSTEM; POPULATIONS;
D O I
10.1016/j.chom.2021.11.014
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Phages impose strong selection on bacteria to evolve resistance against viral predation. Bacteria can rapidly evolve phage resistance via receptor mutation or using their CRISPR-Cas adaptive immune systems. Acquisition of CRISPR immunity relies on the insertion of a phage-derived sequence into CRISPR arrays in the bacterial genome. Using Pseudomonas aeruginosa and its phage DMS3vir as a model, we demonstrate that conditions that reduce bacterial growth rates, such as exposure to bacteriostatic antibiotics (which inhibit cell growth without killing), promote the evolution of CRISPR immunity. We demonstrate that this is due to slower phage development under these conditions, which provides more time for cells to acquire phagederived sequences and mount an immune response. Our data reveal that the speed of phage development is a key determinant of the evolution of CRISPR immunity and suggest that use of bacteriostatic antibiotics can trigger elevated levels of CRISPR immunity in human-associated and natural environments.
引用
收藏
页码:31 / +
页数:16
相关论文
共 50 条
  • [1] Integrase-mediated spacer acquisition during CRISPR-Cas adaptive immunity
    Nunez, James K.
    Lee, Amy S. Y.
    Engelman, Alan
    Doudna, Jennifer A.
    [J]. NATURE, 2015, 519 (7542) : 193 - +
  • [2] Cas1-Cas2 complex formation mediates spacer acquisition during CRISPR-Cas adaptive immunity
    Nunez, James K.
    Kranzusch, Philip J.
    Noeske, Jonas
    Wright, Addison V.
    Davies, Christopher W.
    Doudna, Jennifer A.
    [J]. NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2014, 21 (06) : 528 - 534
  • [3] Molecular mechanisms of CRISPR-Cas spacer acquisition
    McGinn, Jon
    Marraffini, Luciano A.
    [J]. NATURE REVIEWS MICROBIOLOGY, 2019, 17 (01) : 7 - 12
  • [4] Integrase-mediated spacer acquisition during CRISPR–Cas adaptive immunity
    James K. Nuñez
    Amy S. Y. Lee
    Alan Engelman
    Jennifer A. Doudna
    [J]. Nature, 2015, 519 : 193 - 198
  • [5] CRISPR-Cas systems: beyond adaptive immunity
    Westra, Edze R.
    Buckling, Angus
    Fineran, Peter C.
    [J]. NATURE REVIEWS MICROBIOLOGY, 2014, 12 (05) : 317 - 326
  • [6] CRISPR-Cas adaptive immunity and the three Rs
    Killelea, Tom
    Bolt, Edward L.
    [J]. BIOSCIENCE REPORTS, 2017, 37
  • [7] Mechanism for Cas4-assisted directional spacer acquisition in CRISPR-Cas
    Hu, Chunyi
    Almendros, Cristobal
    Nam, Ki Hyun
    Costa, Ana Rita
    Vink, Jochem N. A.
    Haagsma, Anna C.
    Bagde, Saket R.
    Brouns, Stan J. J.
    Ke, Ailong
    [J]. NATURE, 2021, 598 (7881) : 515 - +
  • [8] CRISPR-Cas Systems: Prokaryotes Upgrade to Adaptive Immunity
    Barrangou, Rodolphe
    Marraffini, Luciano A.
    [J]. MOLECULAR CELL, 2014, 54 (02) : 234 - 244
  • [9] The roles of CRISPR-Cas systems in adaptive immunity and beyond
    Barrangou, Rodolphe
    [J]. CURRENT OPINION IN IMMUNOLOGY, 2015, 32 : 36 - 41
  • [10] CRISPR-Cas immunity in prokaryotes
    Luciano A. Marraffini
    [J]. Nature, 2015, 526 : 55 - 61