Syntheses of negative thermal expansion materials Sc2(MO4)3 (M = W, Mo) with a CO2 laser and their Raman spectra

被引:3
|
作者
Liang Yuan [1 ]
Xing Huai-Zhong [1 ]
Chao Ming-Ju [2 ]
Liang Er-Jun [2 ]
机构
[1] Donghua Univ, Coll Sci, Shanghai 201620, Peoples R China
[2] Zhengzhou Univ, Sch Phys Sci & Engn, Minist Educ, Key Lab Mat Phys, Zhengzhou 450052, Peoples R China
基金
中国国家自然科学基金; 高等学校博士学科点专项科研基金;
关键词
negative thermal expansion material; synthesis; laser sintering; Raman spectroscopy; PHASE-TRANSITION; ZIRCONIUM TUNGSTATE; RAPID SYNTHESIS; CRYSTAL WATER; PHONON MODES; MICROSTRUCTURE; SPECTROSCOPY; SC-2(WO4)(3);
D O I
10.7498/aps.63.248106
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Negative thermal expansion materials Sc-2(MO4)(3) (M = W, Mo) are synthesized with a CO2 laser. It is shown that the synthesis of Sc-2(WO4)(3) or Sc-2(MoO4)(3) by laser sintering is a rapid process so that a sample can be synthesized within a few or tens of seconds and has the characteristic of rapid solidification. X-ray diffraction and Raman spectrum analyses demonstrate that the synthesized Sc-2(MO4)(3) (M = W, Mo) are crystallized into orthorhombic structures and each have a high purity. Temperature dependent Raman spectrum analysis suggests that the synthesized samples do not have phase transitions above room temperature but possibly have weak hygroscopicities. According to the Raman analyses of MoO3, WO3, Sc-2(MoO4)(3), and Sc-2(WO4)(3), we draw a diagram describing their photon energy levels and the photon energy of the laser, and then assess the mechanism of the synthesis by laser sintering. Transferring the laser photon energy to photon energy is the channel of light-heat converting. The materials react in the molten pool and are solidified rapidly, forming the final products.
引用
收藏
页数:10
相关论文
共 48 条
  • [41] Phase transition and negative thermal expansion in A2(MoO4)3 system (A=Fe3+, Cr3+ and Al3+)
    Tyagi, AK
    Achary, SN
    Mathews, MD
    [J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2002, 339 (1-2) : 207 - 210
  • [42] Theoretical study of negative thermal expansion mechanism of ZnF2
    Wang, Lei
    Yuan, Peng-Fei
    Wang, Fei
    Sun, Qiang
    Liang, Er-Jun
    Jia, Yu
    [J]. MATERIALS RESEARCH BULLETIN, 2012, 47 (05) : 1113 - 1118
  • [43] Phase Transformation and Negative Thermal Expansion in TaVO5
    Wang, Xiaowei
    Huang, Qingzhen
    Deng, Jinxia
    Yu, Ranbo
    Chen, Jun
    Xing, Xianran
    [J]. INORGANIC CHEMISTRY, 2011, 50 (06) : 2685 - 2690
  • [44] Thermal expansion properties of A2(MO4)3 (A = Ho and Tm; M = W and Mo)
    Xiao, X. L.
    Cheng, Y. Z.
    Peng, J.
    Wu, M. M.
    Chen, D. F.
    Hu, Z. B.
    Kiyanagi, R.
    Fieramosca, J. S.
    Short, S.
    Jorgensen, J.
    [J]. SOLID STATE SCIENCES, 2008, 10 (03) : 321 - 325
  • [45] Rapid synthesis of low thermal expansion materials of Ca1-xSrxZr4P6O24
    Xie, D. Y.
    Wang, Z. H.
    Liu, X. S.
    Song, W. B.
    Yuan, B. H.
    Liang, E. J.
    [J]. CERAMICS INTERNATIONAL, 2012, 38 (05) : 3807 - 3813
  • [46] Preparation of Cu/ZrW2O8 Gradient Films Using Different Targets
    Yan, X.
    Li, M.
    Li, J.
    Cheng, X.
    [J]. MECHANICAL, MATERIALS AND MANUFACTURING ENGINEERING, PTS 1-3, 2011, 66-68 : 1808 - 1811
  • [47] Phase transition and thermal expansion properties of ZrV2-xPxO7
    Yuan Huan-Li
    Yuan Bao-He
    Li Fang
    Liang Er-Jun
    [J]. ACTA PHYSICA SINICA, 2012, 61 (22)
  • [48] Oxygen ion conductivity of La0.8Sr0.2Ga0.83Mg0.17-xCoxO3-δ synthesized by laser rapid solidification
    Zhang Jie
    Yuan Chao
    Wang Jun-Qiao
    Liang Er-Jun
    Chao Ming-Ju
    [J]. CHINESE PHYSICS B, 2013, 22 (08)