Syntheses of negative thermal expansion materials Sc2(MO4)3 (M = W, Mo) with a CO2 laser and their Raman spectra

被引:3
|
作者
Liang Yuan [1 ]
Xing Huai-Zhong [1 ]
Chao Ming-Ju [2 ]
Liang Er-Jun [2 ]
机构
[1] Donghua Univ, Coll Sci, Shanghai 201620, Peoples R China
[2] Zhengzhou Univ, Sch Phys Sci & Engn, Minist Educ, Key Lab Mat Phys, Zhengzhou 450052, Peoples R China
基金
中国国家自然科学基金; 高等学校博士学科点专项科研基金;
关键词
negative thermal expansion material; synthesis; laser sintering; Raman spectroscopy; PHASE-TRANSITION; ZIRCONIUM TUNGSTATE; RAPID SYNTHESIS; CRYSTAL WATER; PHONON MODES; MICROSTRUCTURE; SPECTROSCOPY; SC-2(WO4)(3);
D O I
10.7498/aps.63.248106
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Negative thermal expansion materials Sc-2(MO4)(3) (M = W, Mo) are synthesized with a CO2 laser. It is shown that the synthesis of Sc-2(WO4)(3) or Sc-2(MoO4)(3) by laser sintering is a rapid process so that a sample can be synthesized within a few or tens of seconds and has the characteristic of rapid solidification. X-ray diffraction and Raman spectrum analyses demonstrate that the synthesized Sc-2(MO4)(3) (M = W, Mo) are crystallized into orthorhombic structures and each have a high purity. Temperature dependent Raman spectrum analysis suggests that the synthesized samples do not have phase transitions above room temperature but possibly have weak hygroscopicities. According to the Raman analyses of MoO3, WO3, Sc-2(MoO4)(3), and Sc-2(WO4)(3), we draw a diagram describing their photon energy levels and the photon energy of the laser, and then assess the mechanism of the synthesis by laser sintering. Transferring the laser photon energy to photon energy is the channel of light-heat converting. The materials react in the molten pool and are solidified rapidly, forming the final products.
引用
收藏
页数:10
相关论文
共 48 条
  • [31] PARAGUASSU W, 2007, J VIBR SPECTROSC, V44, P69
  • [32] Synthesis and crystal structure of nanocrystalline phase: Ca1-xMxZr4P6O24 (M = Sr, Ba and x=0.0-1.0)
    Rashmi, Chourasia
    Shrivastava, O. P.
    [J]. SOLID STATE SCIENCES, 2011, 13 (02) : 444 - 454
  • [33] Synthesis, Structure, Negative Thermal Expansion, and Photocatalytic Property of Mo Doped ZrV2O7
    Sahoo, Pranga Parimita
    Sumithra, S.
    Madras, Giridhar
    Row, T. N. Guru
    [J]. INORGANIC CHEMISTRY, 2011, 50 (18) : 8774 - 8781
  • [34] Negative thermal expansion and local dynamics in Cu2O and Ag2O
    Sanson, A.
    Rocca, F.
    Dalba, G.
    Fornasini, P.
    Grisenti, R.
    Dapiaggi, M.
    Artioli, G.
    [J]. PHYSICAL REVIEW B, 2006, 73 (21)
  • [35] Shang R, 2012, INT J APPL CERAM TEC, V9, P1
  • [36] Song W B, 2011, J LIGHT SCATTER, V23, P346
  • [37] A Negative Thermal Expansion Material of ZrMgMo3O12
    Song Wen-Bo
    Liang Er-Jun
    Liu Xian-Sheng
    Li Zhi-Yuan
    Yuan Bao-He
    Wang Jun-Qiao
    [J]. CHINESE PHYSICS LETTERS, 2013, 30 (12)
  • [38] Negative thermal expansion in rare earth molybdates
    Sumithra, S.
    Umarji, A. M.
    [J]. SOLID STATE SCIENCES, 2006, 8 (12) : 1453 - 1458
  • [39] Negative thermal expansion in (HfMg)(WO4)3
    Suzuki, T
    Omote, A
    [J]. JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2004, 87 (07) : 1365 - 1367
  • [40] Mn-based antiperovskite functional materials: Review of research
    Tong Peng
    Wang Bo-Sen
    Sun Yu-Ping
    [J]. CHINESE PHYSICS B, 2013, 22 (06)