Syntheses of negative thermal expansion materials Sc2(MO4)3 (M = W, Mo) with a CO2 laser and their Raman spectra

被引:3
|
作者
Liang Yuan [1 ]
Xing Huai-Zhong [1 ]
Chao Ming-Ju [2 ]
Liang Er-Jun [2 ]
机构
[1] Donghua Univ, Coll Sci, Shanghai 201620, Peoples R China
[2] Zhengzhou Univ, Sch Phys Sci & Engn, Minist Educ, Key Lab Mat Phys, Zhengzhou 450052, Peoples R China
基金
中国国家自然科学基金; 高等学校博士学科点专项科研基金;
关键词
negative thermal expansion material; synthesis; laser sintering; Raman spectroscopy; PHASE-TRANSITION; ZIRCONIUM TUNGSTATE; RAPID SYNTHESIS; CRYSTAL WATER; PHONON MODES; MICROSTRUCTURE; SPECTROSCOPY; SC-2(WO4)(3);
D O I
10.7498/aps.63.248106
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Negative thermal expansion materials Sc-2(MO4)(3) (M = W, Mo) are synthesized with a CO2 laser. It is shown that the synthesis of Sc-2(WO4)(3) or Sc-2(MoO4)(3) by laser sintering is a rapid process so that a sample can be synthesized within a few or tens of seconds and has the characteristic of rapid solidification. X-ray diffraction and Raman spectrum analyses demonstrate that the synthesized Sc-2(MO4)(3) (M = W, Mo) are crystallized into orthorhombic structures and each have a high purity. Temperature dependent Raman spectrum analysis suggests that the synthesized samples do not have phase transitions above room temperature but possibly have weak hygroscopicities. According to the Raman analyses of MoO3, WO3, Sc-2(MoO4)(3), and Sc-2(WO4)(3), we draw a diagram describing their photon energy levels and the photon energy of the laser, and then assess the mechanism of the synthesis by laser sintering. Transferring the laser photon energy to photon energy is the channel of light-heat converting. The materials react in the molten pool and are solidified rapidly, forming the final products.
引用
收藏
页数:10
相关论文
共 48 条
  • [1] Negative thermal expansion in orthorhombic NbOPO4
    Amos, TG
    Sleight, AW
    [J]. JOURNAL OF SOLID STATE CHEMISTRY, 2001, 160 (01) : 230 - 238
  • [2] [Anonymous], 2011, CHIN J LIGHT SCATT
  • [3] Unusual Transformation from Strong Negative to Positive Thermal Expansion in PbTiO3-BiFeO3 Perovskite
    Chen, Jun
    Fan, Longlong
    Ren, Yang
    Pan, Zhao
    Deng, Jinxia
    Yu, Ranbo
    Xing, Xianran
    [J]. PHYSICAL REVIEW LETTERS, 2013, 110 (11)
  • [4] Electronic structure, bonding and phonon modes in the negative thermal expansion materials of Cd(CN)2 and Zn(CN)2
    Ding, Pei
    Liang, E. J.
    Jia, Yu
    Du, Z. Y.
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2008, 20 (27)
  • [5] Structural phase transitions and negative thermal expansion in Sc2(MoO4)3
    Evans, JSO
    Mary, TA
    [J]. INTERNATIONAL JOURNAL OF INORGANIC MATERIALS, 2000, 2 (01): : 143 - 151
  • [6] Negative thermal expansion in Sc2(WO4)3
    Evans, JSO
    Mary, TA
    Sleight, AW
    [J]. JOURNAL OF SOLID STATE CHEMISTRY, 1998, 137 (01) : 148 - 160
  • [7] Colossal positive and negative thermal expansion in the framework material Ag3[Co(CN)6]
    Goodwin, Andrew L.
    Calleja, Mark
    Conterio, Michael J.
    Dove, Martin T.
    Evans, John S. O.
    Keen, David A.
    Peters, Lars
    Tucker, Matthew G.
    [J]. SCIENCE, 2008, 319 (5864) : 794 - 797
  • [8] Guo X Y, 2011, J LIGHT SCATTER, V23, P228
  • [9] Structural investigation of the negative thermal expansion in yttrium and rare earth molybdates
    Guzman-Afonso, Candelaria
    Gonzalez-Silgo, Cristina
    Gonzalez-Platas, Javier
    Eulalio Torres, Manuel
    Diego Lozano-Gorrin, Antonio
    Sabalisck, Nanci
    Sanchez-Fajardo, Victor
    Campo, Javier
    Rodriguez-Carvajal, Juan
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2011, 23 (32)
  • [10] New Methods for Preparing Submicrometer Powders of The Tungstate-Ion Conductor Sc2(WO4)3 and its Al and In Analogs
    Higgins, Brittany
    Graeve, Olivia A.
    Edwards, Doreen D.
    [J]. JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2013, 96 (08) : 2402 - 2410