SOME NEW DIRECTIONS IN GRAPH-BASED SEMI-SUPERVISED LEARNING

被引:0
|
作者
Zhu, Xiaojin [1 ]
Goldberg, Andrew B. [1 ]
Khot, Tushar [1 ]
机构
[1] Univ Wisconsin, Dept Comp Sci, Madison, WI 53706 USA
来源
ICME: 2009 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, VOLS 1-3 | 2009年
关键词
semi-supervised learning; multi-manifold; online learning; compressive sensing; graph;
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this position paper, we first review the state-of-the-art in graph-based semi-supervised learning, and point out three limitations that are particularly relevant to multimedia analysis: (1) rich data is restricted to live on a single manifold; (2) learning must happen in batch mode; and (3) the target label is assumed smooth on the manifold. We then discuss new directions in semi-supervised learning research that can potentially overcome these limitations: (i) modeling data as a mixture of multiple manifolds that may intersect or overlap; (ii) online semi-supervised learning that learns incrementally with low computation and memory needs; and (iii) learning spectrally sparse but non-smooth labels with compressive sensing. We give concrete examples in each new direction. We hope this article will inspire new research that makes semi-supervised learning an even more valuable tool for multimedia analysis.
引用
收藏
页码:1504 / 1507
页数:4
相关论文
共 50 条
  • [31] Graph-based Semi-Supervised & Active Learning for Edge Flows
    Jia, Junteng
    Schaub, Michael T.
    Segarra, Santiago
    Benson, Austin R.
    KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2019, : 761 - 771
  • [32] GRAPH-BASED SEMI-SUPERVISED LEARNING WITH MULTI-LABEL
    Zha, Zheng-Jun
    Mei, Tao
    Wang, Jingdong
    Wang, Zengfu
    Hua, Xian-Sheng
    2008 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, VOLS 1-4, 2008, : 1321 - +
  • [33] Image colourisation using graph-based semi-supervised learning
    Liu, B. -B.
    Lu, Z. -M.
    IET IMAGE PROCESSING, 2009, 3 (03) : 115 - 120
  • [34] Matrix Completion for Graph-Based Deep Semi-Supervised Learning
    Taherkhani, Fariborz
    Kazemi, Hadi
    Nasrabadi, Nasser M.
    THIRTY-THIRD AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FIRST INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / NINTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2019, : 5058 - 5065
  • [35] A Sampling Theory Perspective of Graph-Based Semi-Supervised Learning
    Anis, Aamir
    El Gamal, Aly
    Avestimehr, A. Salman
    Ortega, Antonio
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2019, 65 (04) : 2322 - 2342
  • [36] Model Change Active Learning in Graph-Based Semi-supervised Learning
    Miller, Kevin S.
    Bertozzi, Andrea L.
    COMMUNICATIONS ON APPLIED MATHEMATICS AND COMPUTATION, 2024, 6 (02) : 1270 - 1298
  • [37] Analysis of label noise in graph-based semi-supervised learning
    de Aquino Afonso, Bruno Klaus
    Berton, Lilian
    PROCEEDINGS OF THE 35TH ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING (SAC'20), 2020, : 1127 - 1134
  • [38] A comparison of graph-based semi-supervised learning for data augmentation
    de Oliveira, Willian Dihanster G.
    Penatti, Otavio A. B.
    Berton, Lilian
    2020 33RD SIBGRAPI CONFERENCE ON GRAPHICS, PATTERNS AND IMAGES (SIBGRAPI 2020), 2020, : 264 - 271
  • [39] Contrastive and Generative Graph Convolutional Networks for Graph-based Semi-Supervised Learning
    Wan, Sheng
    Pan, Shirui
    Yang, Jian
    Gong, Chen
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 10049 - 10057
  • [40] Joint sparse graph and flexible embedding for graph-based semi-supervised learning
    Dornaika, F.
    El Traboulsi, Y.
    NEURAL NETWORKS, 2019, 114 : 91 - 95