Model Change Active Learning in Graph-Based Semi-supervised Learning

被引:0
|
作者
Miller, Kevin S. [1 ]
Bertozzi, Andrea L. [1 ]
机构
[1] Univ Calif Los Angeles, Dept Math, 520 Portola Plaza, Los Angeles, CA 90095 USA
关键词
Active learning; Graph-based methods; Semi-supervised learning (SSL); Graph Laplacian; UNCERTAINTY QUANTIFICATION; CLASSIFICATION;
D O I
10.1007/s42967-023-00328-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Active learning in semi-supervised classification involves introducing additional labels for unlabelled data to improve the accuracy of the underlying classifier. A challenge is to identify which points to label to best improve performance while limiting the number of new labels. "Model Change" active learning quantifies the resulting change incurred in the classifier by introducing the additional label(s). We pair this idea with graph-based semi-supervised learning (SSL) methods, that use the spectrum of the graph Laplacian matrix, which can be truncated to avoid prohibitively large computational and storage costs. We consider a family of convex loss functions for which the acquisition function can be efficiently approximated using the Laplace approximation of the posterior distribution. We show a variety of multiclass examples that illustrate improved performance over prior state-of-art.
引用
收藏
页码:1270 / 1298
页数:29
相关论文
共 50 条
  • [1] Active Model Selection for Graph-Based Semi-Supervised Learning
    Zhao, Bin
    Wang, Fei
    Zhang, Changshui
    Song, Yangqiu
    [J]. 2008 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-12, 2008, : 1881 - 1884
  • [3] Graph-based semi-supervised learning
    Zhang, Changshui
    Wang, Fei
    [J]. ARTIFICIAL LIFE AND ROBOTICS, 2009, 14 (04) : 445 - 448
  • [4] Graph-based semi-supervised learning
    Changshui Zhang
    Fei Wang
    [J]. Artificial Life and Robotics, 2009, 14 (4) : 445 - 448
  • [5] Graph-based semi-supervised learning
    Subramanya, Amarnag
    Talukdar, Partha Pratim
    [J]. Synthesis Lectures on Artificial Intelligence and Machine Learning, 2014, 29 : 1 - 126
  • [6] Graph-Based Semi-Supervised Learning as a Generative Model
    He, Jingrui
    Carbonell, Jaime
    Liu, Yan
    [J]. 20TH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2007, : 2492 - 2497
  • [7] Graph-based Semi-Supervised & Active Learning for Edge Flows
    Jia, Junteng
    Schaub, Michael T.
    Segarra, Santiago
    Benson, Austin R.
    [J]. KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2019, : 761 - 771
  • [8] Fairness in graph-based semi-supervised learning
    Tao Zhang
    Tianqing Zhu
    Mengde Han
    Fengwen Chen
    Jing Li
    Wanlei Zhou
    Philip S Yu
    [J]. Knowledge and Information Systems, 2023, 65 : 543 - 570
  • [9] On Consistency of Graph-based Semi-supervised Learning
    Du, Chengan
    Zhao, Yunpeng
    Wang, Feng
    [J]. 2019 39TH IEEE INTERNATIONAL CONFERENCE ON DISTRIBUTED COMPUTING SYSTEMS (ICDCS 2019), 2019, : 483 - 491
  • [10] Fairness in graph-based semi-supervised learning
    Zhang, Tao
    Zhu, Tianqing
    Han, Mengde
    Chen, Fengwen
    Li, Jing
    Zhou, Wanlei
    Yu, Philip S.
    [J]. KNOWLEDGE AND INFORMATION SYSTEMS, 2023, 65 (02) : 543 - 570