Magnetoelastic problem for a body with periodic elastic inclusions

被引:8
|
作者
Kaloerov, S. A. [1 ]
Boronenko, O. I. [1 ]
机构
[1] Donetsk Natl Univ, Donetsk, Ukraine
关键词
anisotropic body; inclusion; fiber; magnetic field; composite; magnetostrictive material; complex potentials; hole; periodic problem; plane problem; piezomagnetic ceramics; crack;
D O I
10.1007/s10778-006-0169-x
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
A general approach based on complex variable theory is proposed to determine the magnetoelastic state of a body with an infinite row of elliptic inclusions under the action of magnetic and elastic fields. Numerical solutions to a two-dimensional problem for a body made of Terfenol-D magnetostrictive material and piezomagnetic ceramic material and having circular, elliptic, and rectilinear inclusions made of a different material are presented depending on the geometry of the inclusions, their material characteristics, the spacing between them, and the type of applied load.
引用
收藏
页码:989 / 996
页数:8
相关论文
共 50 条
  • [41] LINEAR MAGNETOELASTIC PROBLEM FOR A SOFT FERROMAGNETIC ELASTIC SOLID WITH A FINITE CRACK
    SHINDO, Y
    JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1977, 44 (01): : 47 - 50
  • [42] Optimal Control of Parameters for Elastic Body with Thin Inclusions
    Alexander Khludnev
    Antonio Corbo Esposito
    Luisa Faella
    Journal of Optimization Theory and Applications, 2020, 184 : 293 - 314
  • [43] Equilibrium of an Elastic Body with Closely Spaced Thin Inclusions
    Khludnev, A. M.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2018, 58 (10) : 1660 - 1672
  • [44] Timoshenko thin inclusions in an elastic body with possible delamination
    H. Itou
    G. Leugering
    A. M. Khludnev
    Doklady Physics, 2014, 59 : 401 - 404
  • [45] Timoshenko Thin Inclusions in an Elastic Body with Possible Delamination
    Itou, H.
    Leugering, G.
    Khludnev, A. M.
    DOKLADY PHYSICS, 2014, 59 (09) : 401 - 404
  • [46] Equilibrium of an Elastic Body with Closely Spaced Thin Inclusions
    A. M. Khludnev
    Computational Mathematics and Mathematical Physics, 2018, 58 : 1660 - 1672
  • [47] Optimal control of crack growth in elastic body with inclusions
    Khludnev, Alexander
    EUROPEAN JOURNAL OF MECHANICS A-SOLIDS, 2010, 29 (03) : 392 - 399
  • [48] Optimal Control of Parameters for Elastic Body with Thin Inclusions
    Khludnev, Alexander
    Esposito, Antonio Corbo
    Faella, Luisa
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2020, 184 (01) : 293 - 314
  • [49] Asymptotics of anisotropic weakly curved inclusions in an elastic body
    Khludnev A.M.
    Journal of Applied and Industrial Mathematics, 2017, 11 (1) : 88 - 98
  • [50] On the elastic scattering problem from cubic anisotropic inclusions
    Anagnostopoulos, KA
    Charalambopoulos, A
    ADVANCES IN SCATTERING AND BIOMEDICAL ENGINEERING, PROCEEDINGS, 2004, : 3 - 15