Magnetoelastic problem for a body with periodic elastic inclusions

被引:8
|
作者
Kaloerov, S. A. [1 ]
Boronenko, O. I. [1 ]
机构
[1] Donetsk Natl Univ, Donetsk, Ukraine
关键词
anisotropic body; inclusion; fiber; magnetic field; composite; magnetostrictive material; complex potentials; hole; periodic problem; plane problem; piezomagnetic ceramics; crack;
D O I
10.1007/s10778-006-0169-x
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
A general approach based on complex variable theory is proposed to determine the magnetoelastic state of a body with an infinite row of elliptic inclusions under the action of magnetic and elastic fields. Numerical solutions to a two-dimensional problem for a body made of Terfenol-D magnetostrictive material and piezomagnetic ceramic material and having circular, elliptic, and rectilinear inclusions made of a different material are presented depending on the geometry of the inclusions, their material characteristics, the spacing between them, and the type of applied load.
引用
收藏
页码:989 / 996
页数:8
相关论文
共 50 条
  • [11] The Junction Problem for Two Weakly Curved Inclusions in an Elastic Body
    A. M. Khludnev
    T. S. Popova
    Siberian Mathematical Journal, 2020, 61 : 743 - 754
  • [12] THIN INCLUSIONS IN AN ELASTIC BODY
    Beretta, Elena
    Francini, Elisa
    MATEMATICHE, 2005, 60 (02): : 385 - 388
  • [13] Inclusions in a finite elastic body
    Zou, W. -N.
    He, Q. -C.
    Zheng, Q. -S.
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2012, 49 (13) : 1627 - 1636
  • [14] Reconstruction of inclusions in an elastic body
    Uhlmann, Gunther
    Wang, Jenn-Nan
    Wu, Chin-Tien
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2009, 91 (06): : 569 - 582
  • [15] Band structure of the spectrum of magnetoelastic wave in a periodic system of magnetoelastic and nonmagnetic elastic layers
    Bespyatykh, YI
    Dikshtein, IE
    Mal'tsev, VP
    Vasilevskii, V
    Nikitov, SA
    JOURNAL OF COMMUNICATIONS TECHNOLOGY AND ELECTRONICS, 2003, 48 (09) : 1055 - 1062
  • [16] On junction problem with damage parameter for Timoshenko and rigid inclusions inside elastic body
    Khludnev, A. M.
    Popova, T. S.
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2020, 100 (08):
  • [17] Asymptotic Justification of the Models of Thin Inclusions in an Elastic Body in the Antiplane Shear Problem
    Rudoy E.M.
    Itou H.
    Lazarev N.P.
    Rudoy, E.M. (rem@hydro.nsc.ru); Itou, H. (h-itou@rs.tus.ac.jp); Lazarev, N.P. (nyurgun@ngs.ru), 1600, Pleiades journals (15): : 129 - 140
  • [18] Magnetostrictive domains in a periodic system of magnetoelastic and elastic nonmagnetic layers
    Bespyatykh, Yu.I.
    Dikshtejn, I.E.
    Mal'tsev, V.P.
    Vasilevskij, V.
    Radiotekhnika i Elektronika, 2003, 48 (05): : 613 - 620
  • [19] Magnetostrictive domains in a periodic system of magnetoelastic and elastic nonmagnetic layers
    Bespyatykh, YI
    Dikshtein, IE
    Mal'tsev, VP
    Vasilevskii, V
    JOURNAL OF COMMUNICATIONS TECHNOLOGY AND ELECTRONICS, 2003, 48 (05) : 559 - 566
  • [20] Junction problem for elastic and rigid inclusions in elastic bodies
    Faella, Luisa
    Khludnev, Alexander
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2016, 39 (12) : 3381 - 3390