Identification of Active Surface Species in Molten Carbonates Using in situ Raman Spectroscopy

被引:2
|
作者
Zhang, Peng [1 ]
Wu, Tao [1 ]
Huang, Kevin [1 ]
机构
[1] Univ South Carolina, Dept Mech Engn, Columbia, SC 29208 USA
来源
FRONTIERS IN ENERGY RESEARCH | 2021年 / 9卷 / 09期
基金
美国国家科学基金会;
关键词
molten carbonate; surface species; Raman spectroscopy; DFT; alkaline earth;
D O I
10.3389/fenrg.2021.653527
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Here we report the results of a study on active surface species of a pristine and modified (Li-Na)(2)CO3 eutectic using in situ Raman spectroscopy technique. The effects of gas compositions, temperature, time, and alkaline earth have been systematically studied. The species of CO42-, HCO4-, and C2O52- are identified as the three major active species on the surface of (Li-Na)(2)CO3 eutectic by a combined Raman spectroscopy and theoretical density functional theory calculations. The results further reveal that CO42-, HCO4-, and C2O52- are preferably formed in the presence of O-2, H2O, and high CO2 concentration. With the addition of Ba to the pristine (Li-Na)(2)CO3 eutectic, the Raman CO42-/HCO4- shifts become more pronounced.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] In Situ Temperature Measurements of Sliding Surface by Raman Spectroscopy
    Makoto Miyajima
    Kazuyuki Kitamura
    Keishi Matsumoto
    Kazuyuki Yagi
    Tribology Letters, 2020, 68
  • [32] In Situ Temperature Measurements of Sliding Surface by Raman Spectroscopy
    Miyajima, Makoto
    Kitamura, Kazuyuki
    Matsumoto, Keishi
    Yagi, Kazuyuki
    TRIBOLOGY LETTERS, 2020, 68 (04)
  • [33] In situ defect quantification and phase identification during flash sintering using Raman spectroscopy
    Shoemaker, Daniel P. (dpshoema@illinois.edu), 1600, Blackwell Publishing Inc. (104):
  • [34] Identification of biotic and abiotic particles by using a combination of optical tweezers and in situ Raman spectroscopy
    Gessner, R
    Winter, C
    Rösch, P
    Schmitt, M
    Petry, R
    Kiefer, W
    Lankers, M
    Popp, J
    CHEMPHYSCHEM, 2004, 5 (08) : 1159 - 1170
  • [35] Study on rapid nitridation process of molten silicon by thermogravimetry and in situ Raman spectroscopy
    Yang, Jinguang
    Wu, Ping
    Wang, Li
    Zhang, Shiping
    Yan, Dan
    Li, Ya-nan
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2022, 105 (09) : 5627 - 5637
  • [36] In situ defect quantification and phase identification during ash sintering using Raman spectroscopy
    Murray, Shannon E.
    Lv, Guangxin
    Sulekar, Soumitra S.
    Cahill, David G.
    Shoemaker, Daniel P.
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2021, 104 (08) : 3873 - 3882
  • [37] Gemstone identification using Raman spectroscopy
    Jenkins, AL
    Larsen, RA
    SPECTROSCOPY, 2004, 19 (04) : 20 - 25
  • [38] Identification of active fluorescence stained bacteria by Raman spectroscopy
    Krause, Mario
    Beyer, Beatrice
    Pietsch, Christian
    Radt, Benno
    Harz, Michaela
    Roesch, Petra
    Popp, Juergen
    BIOPHOTONICS: PHOTONIC SOLUTIONS FOR BETTER HEALTH CARE, 2008, 6991
  • [39] In-situ identification of meat from different animal species by shifted excitation Raman difference spectroscopy
    Sowoidnich, Kay
    Kronfeldt, Heinz-Detlef
    SENSING FOR AGRICULTURE AND FOOD QUALITY AND SAFETY IV, 2012, 8369
  • [40] Identification of surface-enhanced Raman spectroscopy using hybrid transformer network
    Weng, Shizhuang
    Wang, Cong
    Zhu, Rui
    Wu, Yehang
    Yang, Rui
    Zheng, Ling
    Li, Pan
    Zhao, Jinling
    Zheng, Shouguo
    SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2024, 316