Lie point symmetries of differential-difference equations

被引:17
|
作者
Levi, D. [1 ,2 ]
Winternitz, P. [3 ,4 ]
Yamilov, R. I. [5 ]
机构
[1] Univ Roma Tre, Dipartimento Ingn Elettron, I-00146 Rome, Italy
[2] Sezione Ist Nazl Fis Nucl, I-00146 Rome, Italy
[3] Univ Montreal, Ctr Rech Math, Montreal, PQ H3C 3J7, Canada
[4] Univ Montreal, Dept Math & Stat, Montreal, PQ H3C 3J7, Canada
[5] Russian Acad Sci, Ufa Inst Math, Ufa 450008, Russia
基金
加拿大自然科学与工程研究理事会; 俄罗斯基础研究基金会;
关键词
INTEGRABILITY;
D O I
10.1088/1751-8113/43/29/292002
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present an algorithm for determining the Lie point symmetries of differential equations on fixed non-transforming lattices, i.e. equations involving both continuous and discrete-independent variables. The symmetries of a specific integrable discretization of the Krichever-Novikov equation, the Toda lattice and Toda field theory are presented as examples of the general method.
引用
收藏
页数:14
相关论文
共 50 条