Non-premixed acoustically perturbed swirling flame dynamics

被引:29
|
作者
Idahosa, Uyi [1 ]
Saha, Abhishek [1 ]
Xu, Chengying [1 ]
Basu, Saptarshi [1 ]
机构
[1] Univ Cent Florida, Dept Mech Mat & Aerosp Engn, Orlando, FL 32816 USA
关键词
Swirl stabilized flames; Non-premixed flames; Rayleigh criterion; Forced flame response; Wavelet analysis; Acoustic flame perturbation; COMBUSTION INSTABILITY ANALYSIS; THERMOACOUSTIC INSTABILITIES; RAYLEIGH CRITERION; AIR FLAMES; OSCILLATIONS; MODEL; IMPEDANCE; BURNERS;
D O I
10.1016/j.combustflame.2010.05.008
中图分类号
O414.1 [热力学];
学科分类号
摘要
An investigation into the response of non-premixed swirling flames to acoustic perturbations at various frequencies (f(p) = 0-315 Hz) and swirl intensities (S = 0.09 and 0.34) is carried out. Perturbations are generated using a loudspeaker at the base of an atmospheric co-flow burner with resulting velocity oscillation amplitudes vertical bar u'/U-avg vertical bar in the 0.03-0.30 range. The dependence of flame dynamics on the relative richness of the flame is investigated by studying various constant fuel flow rate flame configurations. Flame heat release rate is quantitatively measured using a photomultiplier with a 430 nm bandpass filter for observing CH* chemiluminescence which is simultaneously imaged with a phase-locked CCD camera. The flame response is observed to exhibit a low-pass filter characteristic with minimal flame response beyond pulsing frequencies of 200 Hz. Flames at lower fuel flow rates are observed to remain attached to the central fuel pipe at all acoustic pulsing frequencies. PIV imaging of the associated isothermal fields show the amplification in flame aspect ratio is caused by the narrowing of the inner recirculation zone (IRZ). Good correlation is observed between the estimated flame surface area and the heat release rate signature at higher swirl intensity flame configurations. A flame response index analogous to the Rayleigh criterion in non-forced flames is used to assess the potential for a strong flame response at specific perturbation configurations and is found to be a good predictor of highly responsive modes. Phase conditioned analysis of the flame dynamics yield additional criteria in highly responsive modes to include the effective amplitude of velocity oscillations induced by the acoustic pulsing. In addition, highly responsive modes were characterized by velocity to heat release rate phase differences in the +/-pi/2 range. A final observed characteristic in highly responsive flames is a Strouhal number between 1 and 3.5 based on the burner co-flow annulus diameter (St = fpU(avg)/d(m)). Finally, wavelet analyses of heat release rate perturbations indicate highly responsive modes are characterized by sustained low frequency oscillations which accompany the high amplitude velocity perturbations at these modes. Higher intensity low frequency heat release rate oscillations are observed for lean flame/low pulsing frequency conditions. (C) 2010 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
引用
收藏
页码:1800 / 1814
页数:15
相关论文
共 50 条
  • [21] Cover illustration: Non-premixed hydrocarbon flame
    Dimotakis, PE
    NONLINEARITY, 1997, 10 (01) : 1 - 2
  • [22] ON THE STABILITY OF A TURBULENT NON-PREMIXED METHANE FLAME
    Iyogun, C. O.
    Birouk, M.
    COMBUSTION SCIENCE AND TECHNOLOGY, 2009, 181 (12) : 1443 - 1463
  • [23] Suppression of a non-premixed flame behind a step
    Grosshandler, William
    Hamins, Anthony
    McGrattan, Kevin
    Charagundla, S. Rao
    Presser, Cary
    Proceedings of the Combustion Institute, 2000, 28 (02) : 2957 - 2964
  • [24] Analysis of the filtered non-premixed turbulent flame
    Wang, Lipo
    COMBUSTION AND FLAME, 2017, 175 : 259 - 269
  • [25] Suppression of a non-premixed flame behind a step
    Grosshandler, W
    Hamins, A
    McGrattan, K
    Charagundla, SR
    Presser, C
    PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2000, 28 : 2957 - 2964
  • [26] Stability characteristics and flowfields of turbulent non-premixed swirling flames
    Al-Abdeli, YM
    Masri, AR
    COMBUSTION THEORY AND MODELLING, 2003, 7 (04) : 731 - 766
  • [27] Turbulence-chemistry interactions in non-premixed swirling flames
    Masri, A. R.
    Kalt, P. A. M.
    Al-Abdeli, Y. M.
    Barlow, R. S.
    COMBUSTION THEORY AND MODELLING, 2007, 11 (05) : 653 - 673
  • [28] SIMULATIONS OF UNSTEADY OSCILLATIONS IN TURBULENT NON-PREMIXED SWIRLING FLAMES
    Dinesh, Ranga
    Jenkins, Karl
    Kirkpatrick, Michael
    PROCEEDINGS OF THE ASME TURBO EXPO 2009, VOL 2, 2009, : 317 - 323
  • [29] Experimental investigation of methane premixed swirling flame dynamics
    Liu, Shi
    Weng, Fang-Long
    Zhang, Xiao-Yu
    Zhu, Min
    Kung Cheng Je Wu Li Hsueh Pao/Journal of Engineering Thermophysics, 2016, 37 (01): : 198 - 201
  • [30] Experimental investigation of entropy waves generated from acoustically excited premixed swirling flame
    Wang, Guoqing
    Liu, Xunchen
    Wang, Sirui
    Li, Lei
    Qi, Fei
    COMBUSTION AND FLAME, 2019, 204 : 85 - 102