Image decomposition and uncertainty quantification for the assessment of manufacturing tolerances in stress analysis

被引:3
|
作者
Marcuccio, Gabriele [1 ]
Bonisoli, Elvio [1 ]
Tornincasa, Stefano [1 ]
Mottershead, John E. [2 ]
Patelli, Edoardo [2 ]
Wang, Weizhuo [3 ]
机构
[1] Politecn Torino, Dept Management & Prod Engn, I-10129 Turin, Italy
[2] Univ Liverpool, Inst Risk & Uncertainty, Liverpool L69 3BX, Merseyside, England
[3] Manchester Metropolitan Univ, Sch Engn, Manchester M15 6BH, Lancs, England
来源
关键词
Interference fit; shape descriptor; polynomial chaos expansion; global sensitivity analysis; dimensional tolerances;
D O I
10.1177/0309324714533694
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This article presents a methodology for the treatment of uncertainty in nonlinear, interference-fit, stress analysis problems arising from manufacturing tolerances. Image decomposition is applied to the uncertain stress field to produce a small number of shape descriptors that allow for variability in the location of high-stress points when geometric parameters (dimensions) are changed within tolerance ranges. A meta-model, in this case based on the polynomial chaos expansion, is trained using a full finite element model to provide a mapping from input geometric parameters to output shape descriptors. Global sensitivity analysis using Sobol's indices provides a design tool that enables the influence of each input parameter on the observed variances of the outputs to be quantified. The methodology is illustrated by a simplified practical design problem in the manufacture of automotive wheels.
引用
收藏
页码:618 / 631
页数:14
相关论文
共 50 条
  • [31] Utilizing local orientation image analysis for microstructure quantification in additive manufacturing
    Beigzadeh, Sahar
    Shield, Jeffrey E.
    MATERIALS CHARACTERIZATION, 2024, 210
  • [32] Inspecting geometric tolerances: Uncertainty analysis in position tolerances control on Coordinate Measuring Machines
    Romano D.
    Vicario G.
    Statistical Methods and Applications, 2002, 11 (1) : 83 - 94
  • [33] The Stability Analysis of Hydrodynamic Journal Bearings Allowing for Manufacturing Tolerances. Part I: Effect Analysis of Manufacturing Tolerances by Taguchi Method
    Xu, Wubin
    Ogrodnik, Peter J.
    Goodwin, Mike J.
    Bancroft, Gordon A.
    2009 INTERNATIONAL CONFERENCE ON MEASURING TECHNOLOGY AND MECHATRONICS AUTOMATION, VOL II, 2009, : 164 - +
  • [35] Assessment and quantification of HF radar uncertainty
    O'Donncha, Fearghal
    McKenna, Sean
    Updyke, Teresa
    Roarty, Hugh
    Ragnoli, Emanuele
    2014 OCEANS - ST. JOHN'S, 2014,
  • [36] Virtual experiments for the assessment of data analysis and uncertainty quantification methods in scatterometry
    Kok, Gertjan
    van Dijk, Marcel
    Wuebbeler, Gerd
    Elster, Clemens
    METROLOGIA, 2023, 60 (04)
  • [37] Special Issue on Uncertainty Quantification and Management in Additive Manufacturing
    Hu, Zhen
    Nannapaneni, Saideep
    Mahadevan, Sankaran
    ASCE-ASME JOURNAL OF RISK AND UNCERTAINTY IN ENGINEERING SYSTEMS PART B-MECHANICAL ENGINEERING, 2022, 8 (01):
  • [38] Data Analytics and Uncertainty Quantification for Energy Prediction in Manufacturing
    Ak, Ronay
    Bhinge, Raunak
    PROCEEDINGS 2015 IEEE INTERNATIONAL CONFERENCE ON BIG DATA, 2015, : 2782 - 2784
  • [39] A Spline Dimensional Decomposition for Uncertainty Quantification in High Dimensions
    Rahman, Sharif
    Jahanbin, Ramin
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2022, 10 (01): : 404 - 438
  • [40] Stochastic Uncertainty Quantification of the Conductivity in EEG Source Analysis by Using Polynomial Chaos Decomposition
    Gaignaire, Roman
    Crevecoeur, Guillaume
    Dupre, Luc
    Sabariego, Ruth V.
    Dular, Patrick
    Geuzaine, Christophe
    IEEE TRANSACTIONS ON MAGNETICS, 2010, 46 (08) : 3457 - 3460