Image decomposition and uncertainty quantification for the assessment of manufacturing tolerances in stress analysis

被引:3
|
作者
Marcuccio, Gabriele [1 ]
Bonisoli, Elvio [1 ]
Tornincasa, Stefano [1 ]
Mottershead, John E. [2 ]
Patelli, Edoardo [2 ]
Wang, Weizhuo [3 ]
机构
[1] Politecn Torino, Dept Management & Prod Engn, I-10129 Turin, Italy
[2] Univ Liverpool, Inst Risk & Uncertainty, Liverpool L69 3BX, Merseyside, England
[3] Manchester Metropolitan Univ, Sch Engn, Manchester M15 6BH, Lancs, England
来源
关键词
Interference fit; shape descriptor; polynomial chaos expansion; global sensitivity analysis; dimensional tolerances;
D O I
10.1177/0309324714533694
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This article presents a methodology for the treatment of uncertainty in nonlinear, interference-fit, stress analysis problems arising from manufacturing tolerances. Image decomposition is applied to the uncertain stress field to produce a small number of shape descriptors that allow for variability in the location of high-stress points when geometric parameters (dimensions) are changed within tolerance ranges. A meta-model, in this case based on the polynomial chaos expansion, is trained using a full finite element model to provide a mapping from input geometric parameters to output shape descriptors. Global sensitivity analysis using Sobol's indices provides a design tool that enables the influence of each input parameter on the observed variances of the outputs to be quantified. The methodology is illustrated by a simplified practical design problem in the manufacture of automotive wheels.
引用
收藏
页码:618 / 631
页数:14
相关论文
共 50 条
  • [11] Evaluation and uncertainty analysis of vectorial tolerances
    Natl Chung Cheng Univ, Chia-Yi, Taiwan
    Precis Eng, 2 (123-137):
  • [12] Evaluation and uncertainty analysis of vectorial tolerances
    Yau, HT
    PRECISION ENGINEERING-JOURNAL OF THE AMERICAN SOCIETY FOR PRECISION ENGINEERING, 1997, 20 (02): : 123 - 137
  • [13] Bayesian analysis for uncertainty quantification of in situ stress data
    Feng, Yu
    Bozorgzadeh, Nezam
    Harrison, John P.
    INTERNATIONAL JOURNAL OF ROCK MECHANICS AND MINING SCIENCES, 2020, 134
  • [14] Adaptive decomposition technique for uncertainty quantification
    Le Maitre, O. P.
    Najm, H. N.
    Knio, C. M.
    Ghanem, R. G.
    Structural Dynamics - EURODYN 2005, Vols 1-3, 2005, : 817 - 822
  • [15] Uncertainty quantification for metal foam structures by means of image analysis
    Liebscher, A.
    Proppe, C.
    Redenbach, C.
    Schwarzer, D.
    PROBABILISTIC ENGINEERING MECHANICS, 2012, 28 : 143 - 151
  • [16] Quantification of uncertainties due to manufacturing tolerances using deterministic sampling methods
    Cervantes, Elias Y. Garcia
    Erasmus, Bernard
    van der Marck, Steven
    Fedon, Christian
    NUCLEAR ENGINEERING AND DESIGN, 2021, 382
  • [17] An evolution of uncertainty assessment and quantification
    Booker, J. M.
    Ross, T. J.
    SCIENTIA IRANICA, 2011, 18 (03) : 669 - 676
  • [18] Uncertainty quantification and reduction in metal additive manufacturing
    Wang, Zhuo
    Jiang, Chen
    Liu, Pengwei
    Yang, Wenhua
    Zhao, Ying
    Horstemeyer, Mark F.
    Chen, Long-Qing
    Hu, Zhen
    Chen, Lei
    NPJ COMPUTATIONAL MATERIALS, 2020, 6 (01)
  • [19] Uncertainty Quantification in Performance Evaluation of Manufacturing Processes
    Nannapaneni, Saideep
    Mahadevan, Sankaran
    2014 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2014, : 996 - 1005
  • [20] Uncertainty quantification and reduction in metal additive manufacturing
    Zhuo Wang
    Chen Jiang
    Pengwei Liu
    Wenhua Yang
    Ying Zhao
    Mark F. Horstemeyer
    Long-Qing Chen
    Zhen Hu
    Lei Chen
    npj Computational Materials, 6