Limiting Current in Nanostructured Block Copolymer Electrolytes

被引:21
|
作者
Maslyn, Jacqueline A. [1 ,2 ]
Frenck, Louise [1 ]
Veeraraghavan, Vijay D. [1 ]
Muller, Alexander [3 ]
Ho, Alec S. [1 ]
Marwaha, Nandan [1 ]
Loo, Whitney S. [1 ]
Parkinson, Dilworth Y. [4 ]
Minor, Andrew M. [3 ,5 ]
Balsara, Nitash P. [1 ,2 ,6 ]
机构
[1] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA
[2] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA
[3] Lawrence Berkeley Natl Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA
[4] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA
[5] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA
[6] Lawrence Berkeley Natl Lab, Energy Technol Area, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
LITHIUM METAL; DIFFUSION-COEFFICIENTS; TRANSFERENCE NUMBERS; MOLECULAR-WEIGHT; POLYMER; TRANSPORT; GROWTH; SALT; ION; CONDUCTIVITY;
D O I
10.1021/acs.macromol.1c00425
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Next-generation electrolytes for lithium batteries must be able to conduct ions at sufficiently high current densities; yet this regime is rarely studied directly. The limiting current density of an electrolyte quantifies the highest possible rate of ion transport under an applied dc potential. Herein, we report on the limiting current density in twelve nanostructured polystyrene-block-poly(ethylene oxide) (PS-b-PEO, or SEO) copolymer electrolytes. We find that the limiting current at a given salt concentration increases systematically with increasing volume fraction of the PEO block (phi(EO)). In contrast, the effective-medium theory, commonly used to analyze conductivity in block copolymer electrolytes, predicts that limiting current is independent of phi(EO). To resolve this conundrum, the ionic conductivity, the mutual diffusion coefficient of the salt, and the steady-state current fraction of the block copolymer electrolytes were measured. These measurements enable predictions of limiting current with no adjustable parameters using the concentrated solution theory. We found quantitative agreement between experimentally measured limiting current densities and predictions based on the concentrated solution theory. This work sheds light on how to reliably measure and predict limiting current density in composite electrolytes.
引用
收藏
页码:4010 / 4022
页数:13
相关论文
共 50 条
  • [41] Designing nanostructured block copolymer surfaces to control protein adhesion
    Schricker, Scott R.
    Palacio, Manuel L. B.
    Bhushan, Bharat
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2012, 370 (1967): : 2348 - 2380
  • [42] Nanostructured Titanium Oxide Fabricated via Block Copolymer Template
    Watanabe, Ryoko
    Iyoda, Tomokazu
    Ito, Kaori
    ELECTROCHEMISTRY, 2009, 77 (03) : 214 - 218
  • [43] Block copolymer based nanostructured materials for energy storage and conversion
    Wiesner, Ulrich
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2010, 240
  • [44] Photocurable polydiene-based block copolymer nanostructured hydrogels
    Scalfani, Vincent F.
    Bailey, Travis S.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2011, 242
  • [45] Ionic Conductivity of Nanostructured Block Copolymer/Ionic Liquid Membranes
    Hoarfrost, Megan L.
    Segalman, Rachel A.
    MACROMOLECULES, 2011, 44 (13) : 5281 - 5288
  • [46] Carbon dioxide - dilated block copolymer templates for nanostructured material
    Brown, GD
    Watkins, JJ
    MATERIALS ISSUES AND MODELING FOR DEVICE NANOFABRICATION, 2000, 584 : 169 - 174
  • [47] Nanoparticle Network Formation in Nanostructured and Disordered Block Copolymer Matrices
    Michelle K Gaines
    Steven D Smith
    Jon Samseth
    Saad A Khan
    Richard J Spontak
    Nanoscale Research Letters, 5
  • [48] POLY 500-Block copolymer electrolytes for lithium batteries
    Balsara, Nitash P.
    Panday, Ashoutosh
    Wanakule, Nisita S.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2009, 238
  • [49] Ionic Conductivity of Low Molecular Weight Block Copolymer Electrolytes
    Yuan, Rodger
    Teran, Alexander A.
    Gurevitch, Inna
    Mullin, Scott A.
    Wanakule, Nisita S.
    Balsara, Nitash P.
    MACROMOLECULES, 2013, 46 (03) : 914 - 921
  • [50] Block Copolymer Electrolytes with Excellent Properties in a Wide Temperature Range
    Wu, Fan
    Luo, Longfei
    Tang, Zhehao
    Liu, Dong
    Shen, Zhihao
    Fan, Xing-He
    ACS APPLIED ENERGY MATERIALS, 2020, 3 (07) : 6536 - 6543