Limiting Current in Nanostructured Block Copolymer Electrolytes

被引:21
|
作者
Maslyn, Jacqueline A. [1 ,2 ]
Frenck, Louise [1 ]
Veeraraghavan, Vijay D. [1 ]
Muller, Alexander [3 ]
Ho, Alec S. [1 ]
Marwaha, Nandan [1 ]
Loo, Whitney S. [1 ]
Parkinson, Dilworth Y. [4 ]
Minor, Andrew M. [3 ,5 ]
Balsara, Nitash P. [1 ,2 ,6 ]
机构
[1] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA
[2] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA
[3] Lawrence Berkeley Natl Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA
[4] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA
[5] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA
[6] Lawrence Berkeley Natl Lab, Energy Technol Area, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
LITHIUM METAL; DIFFUSION-COEFFICIENTS; TRANSFERENCE NUMBERS; MOLECULAR-WEIGHT; POLYMER; TRANSPORT; GROWTH; SALT; ION; CONDUCTIVITY;
D O I
10.1021/acs.macromol.1c00425
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Next-generation electrolytes for lithium batteries must be able to conduct ions at sufficiently high current densities; yet this regime is rarely studied directly. The limiting current density of an electrolyte quantifies the highest possible rate of ion transport under an applied dc potential. Herein, we report on the limiting current density in twelve nanostructured polystyrene-block-poly(ethylene oxide) (PS-b-PEO, or SEO) copolymer electrolytes. We find that the limiting current at a given salt concentration increases systematically with increasing volume fraction of the PEO block (phi(EO)). In contrast, the effective-medium theory, commonly used to analyze conductivity in block copolymer electrolytes, predicts that limiting current is independent of phi(EO). To resolve this conundrum, the ionic conductivity, the mutual diffusion coefficient of the salt, and the steady-state current fraction of the block copolymer electrolytes were measured. These measurements enable predictions of limiting current with no adjustable parameters using the concentrated solution theory. We found quantitative agreement between experimentally measured limiting current densities and predictions based on the concentrated solution theory. This work sheds light on how to reliably measure and predict limiting current density in composite electrolytes.
引用
收藏
页码:4010 / 4022
页数:13
相关论文
共 50 条
  • [21] Self-assembly of nanostructured block copolymer nanoparticles
    Jin, Zhaoxia
    Fan, Hailong
    SOFT MATTER, 2014, 10 (46) : 9212 - 9219
  • [22] Effect of Ion Distribution on Conductivity of Block Copolymer Electrolytes
    Gomez, Enrique D.
    Panday, Ashoutosh
    Feng, Edward H.
    Chen, Vincent
    Stone, Gregory M.
    Minor, Andrew M.
    Kisielowski, Christian
    Downing, Kenneth H.
    Borodin, Oleg
    Smith, Grant D.
    Balsara, Nitash P.
    NANO LETTERS, 2009, 9 (03) : 1212 - 1216
  • [23] Intrinsic Ion Transport Properties of Block Copolymer Electrolytes
    Sharon, Daniel
    Bennington, Peter
    Dolejsi, Moshe
    Webb, Michael A.
    Dong, Ban Xuan
    de Pablo, Juan J.
    Nealey, Paul F.
    Patel, Shrayesh N.
    ACS NANO, 2020, 14 (07) : 8902 - 8914
  • [24] Conductivity of Block Copolymer Electrolytes Containing Lithium Polysulfides
    Wang, Dunyang Rita
    Wujcik, Kevin H.
    Teran, Alexander A.
    Balsara, Nitash P.
    MACROMOLECULES, 2015, 48 (14) : 4863 - 4873
  • [25] Synthesis of a nanostructured star block copolymer with a cyclotriphosphazene core
    Han, Jae Kook
    Kim, Sung Tae
    Kim, Hyun Jung
    Kwon, Yong Ku
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2006, 6 (11) : 3446 - 3449
  • [26] Characterization of microstructured block copolymer electrolytes for lithium batteries
    Balsara, Nitash P.
    Mullin, Scott A.
    Stone, Gregory
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2011, 241
  • [27] Preparation of block copolymer electrolytes and its electrochemical performance
    Zhang, Kun
    Liu, Na
    Tian, Jun
    Liang, Xiaoqiang
    Chen, Guanghai
    Gao, Hongbo
    Hu, Daozhong
    Tong, Lei
    Tian, Cuijun
    Wang, Haochen
    CAILIAO GONGCHENG-JOURNAL OF MATERIALS ENGINEERING, 2024, 52 (06): : 69 - 77
  • [28] Role of Defects in Ion Transport in Block Copolymer Electrolytes
    Kambe, Yu
    Arges, Christopher G.
    Czaplewski, David A.
    Dolejsi, Moshe
    Krishnan, Satya
    Stoykovich, Mark P.
    de Pablo, Juan J.
    Nealey, Paul F.
    NANO LETTERS, 2019, 19 (07) : 4684 - 4691
  • [29] Structural Dynamics of Strongly Segregated Block Copolymer Electrolytes
    Oparaji, Onyekachi
    Narayanan, Suresh
    Sandy, Alec
    Ramakrishnan, Subramanian
    Hallinan, Daniel, Jr.
    MACROMOLECULES, 2018, 51 (07) : 2591 - 2603
  • [30] Block copolymer electrolytes for rechargeable lithium batteries.
    Mayes, AM
    Soo, PP
    Huang, BY
    Sadoway, DR
    Harris, DJ
    Schmidt-Rohr, K
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1999, 218 : U661 - U661