Apache Spark Methods and Techniques in Big Data-A Review

被引:2
|
作者
Sahana, H. P. [1 ]
Sanjana, M. S. [1 ]
Muddasir, N. Mohammed [1 ]
Vidyashree, K. P. [1 ]
机构
[1] Vidyavardhaka Coll Engn, Dept Informat Sci & Engn, Mysuru, Karnataka, India
关键词
Apache Spark; Big data; Data processing;
D O I
10.1007/978-981-15-0146-3_67
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Major online sites such as Amazon, eBay, and Yahoo are now adopting Spark. Many organizations run Spark in thousands of nodes available in the clusters. Spark is a "rapid cluster computing" and a broader data processing platform. It has a thirsty and active open-source community. Spark core is the Apache Spark kernel. We discuss in this paper the use and applications of Apache Spark, the mainstream of popular organization. These organizations extract, collect event data from the users' daily use, and engage in real-time interactions with such data. As a result, Apache Spark is a big data next-generation tool. It offers both batch and streaming capabilities to process data more quickly.
引用
收藏
页码:721 / 726
页数:6
相关论文
共 50 条
  • [41] Predictors of outpatients' no-show: big data analytics using apache spark
    Daghistani, Tahani
    AlGhamdi, Huda
    Alshammari, Riyad
    AlHazme, Raed H.
    JOURNAL OF BIG DATA, 2020, 7 (01)
  • [42] A Big Data Framework for Intrusion Detection in Smart Grids Using Apache Spark
    Vimalkumar, K.
    Radhika, N.
    2017 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATIONS AND INFORMATICS (ICACCI), 2017, : 198 - 204
  • [43] Concept and benchmark results for Big Data energy forecasting based on Apache Spark
    González Ordiano J.Á.
    Bartschat A.
    Ludwig N.
    Braun E.
    Waczowicz S.
    Renkamp N.
    Peter N.
    Düpmeier C.
    Mikut R.
    Hagenmeyer V.
    Journal of Big Data, 5 (1)
  • [44] Big Data Application in Functional Magnetic Resonance Imaging using Apache Spark
    Sarraf, Saman
    Ostadhashem, Mehdi
    PROCEEDINGS OF 2016 FUTURE TECHNOLOGIES CONFERENCE (FTC), 2016, : 281 - 284
  • [45] Evolutionary Undersampling for Extremely Imbalanced Big Data Classification under Apache Spark
    Triguero, I.
    Galar, M.
    Merino, D.
    Maillo, J.
    Bustince, H.
    Herrera, F.
    2016 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2016, : 640 - 647
  • [46] SIDELOADING - INGESTION OF LARGE POINT CLOUDS INTO THE APACHE SPARK BIG DATA ENGINE
    Boehm, J.
    Liu, K.
    Alis, C.
    XXIII ISPRS CONGRESS, COMMISSION II, 2016, 41 (B2): : 343 - 348
  • [47] Fuzzy Based Clustering Algorithms to Handle Big Data with Implementation on Apache Spark
    Bharill, Neha
    Tiwari, Aruna
    Malviya, Aayushi
    PROCEEDINGS 2016 IEEE SECOND INTERNATIONAL CONFERENCE ON BIG DATA COMPUTING SERVICE AND APPLICATIONS (BIGDATASERVICE 2016), 2016, : 95 - 104
  • [48] Query Answering On Uncertain Big RDF Data Using Apache Spark Framework
    Benbernou, Salima
    Ouziri, Mourad
    2018 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2018, : 4854 - 4860
  • [49] Low Cost Big Data Solutions: The Case of Apache Spark on Beowulf Clusters
    Fotache, Marin
    Cluci, Marius-Iulian
    Greavu-Serban, Valerica
    PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON INTERNET OF THINGS, BIG DATA AND SECURITY (IOTBDS), 2020, : 327 - 334
  • [50] Exhaustive search algorithms to mine subgroups on Big Data using Apache Spark
    Padillo F.
    Luna J.M.
    Ventura S.
    Progress in Artificial Intelligence, 2017, 6 (2) : 145 - 158