Query Answering On Uncertain Big RDF Data Using Apache Spark Framework

被引:0
|
作者
Benbernou, Salima [1 ]
Ouziri, Mourad [1 ]
机构
[1] Univ Paris 05, Univ Sorbonnes Paris Cite, Paris, France
关键词
Big data; Uncertainty; Probabilistic RDF; Query answering; Apache Spark ecosystem;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Data is often associated with uncertainty because the fusion of conflicting data sources, measurement inaccuracy, sampling discrepancy, outdated data sources. We address the problem of query answering over uncertain big data sources using Resource Description Framework (RDF) and ontologies, while computing the exact uncertainty measure of the answer. Therefore, the probability is embraced along the reasoning process when answering. the query. In this paper, we introduce a probabilistic approach for answering user queries that computes complete results by exploiting uncertain knowledge on data sources. We have designed algorithms that are ontological rules based to infer implicit data by combining saturation and query rewriting reasoning. To handle big data the algorithms are spark-based implementation.
引用
收藏
页码:4854 / 4860
页数:7
相关论文
共 50 条
  • [1] RDF Query Answering Using Apache Spark: Review and Assessment
    Agathangelos, Giannis
    Troullinou, Georgia
    Kondylakis, Haridimos
    Stefanidis, Kostas
    Plexousakis, Dimitris
    [J]. 2018 IEEE 34TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING WORKSHOPS (ICDEW), 2018, : 54 - 59
  • [2] Query Execution Time Analysis Using Apache Spark Framework for Big Data: A CRM Approach
    Yadav, Madan Lal
    [J]. JOURNAL OF INFORMATION & KNOWLEDGE MANAGEMENT, 2022, 21 (04)
  • [3] Query Execution Time Analysis Using Apache Spark Framework for Big Data: A CRM Approach
    Yadav, Madan Lal
    [J]. Journal of Information and Knowledge Management, 2022, 21 (04):
  • [4] A Big Data Analysis Framework Using Apache Spark and Deep Learning
    Gupta, Anand
    Thakur, Hardeo Kumar
    Shrivastava, Ritvik
    Kumar, Pulkit
    Nag, Sreyashi
    [J]. 2017 17TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS (ICDMW 2017), 2017, : 9 - 16
  • [5] A Big Data Framework for Intrusion Detection in Smart Grids Using Apache Spark
    Vimalkumar, K.
    Radhika, N.
    [J]. 2017 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATIONS AND INFORMATICS (ICACCI), 2017, : 198 - 204
  • [6] A scalable and extensible framework for query answering over RDF
    De Virgilio, Roberto
    Del Nostro, Pierluigi
    Gianforme, Giorgio
    Paolozzi, Stefano
    [J]. WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS, 2011, 14 (5-6): : 599 - 622
  • [7] A scalable and extensible framework for query answering over RDF
    Roberto De Virgilio
    Pierluigi Del Nostro
    Giorgio Gianforme
    Stefano Paolozzi
    [J]. World Wide Web, 2011, 14 : 599 - 622
  • [8] A Distributed Query Method for RDF Data on Spark
    Guo, Minru
    Wang, Jingbin
    [J]. BIG DATA TECHNOLOGY AND APPLICATIONS, 2016, 590 : 102 - 115
  • [9] Linked Data Partitioning for RDF Processing on Apache Spark
    Atashkar, Amir Hossein
    Ghadiri, Nasser
    Joodaki, Mehdi
    [J]. 2017 3RD INTERNATIONAL CONFERENCE ON WEB RESEARCH (ICWR), 2017, : 73 - 77
  • [10] Distributed RDF Query Answering with Dynamic Data Exchange
    Potter, Anthony
    Motik, Boris
    Nenov, Yavor
    Horrocks, Ian
    [J]. SEMANTIC WEB - ISWC 2016, PT I, 2016, 9981 : 480 - 497