Bayesian reconstruction of chaotic dynamical systems

被引:59
|
作者
Meyer, R [1 ]
Christensen, N
机构
[1] Univ Auckland, Dept Stat, Auckland 1, New Zealand
[2] Carleton Coll, Northfield, MN 55057 USA
来源
PHYSICAL REVIEW E | 2000年 / 62卷 / 03期
关键词
D O I
10.1103/PhysRevE.62.3535
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We present a Bayesian approach to the problem of determining parameters of nonlinear models from time series of noisy data. Recent approaches to this problem have been statistically flawed. By applying a Markov chain Monte Carlo algorithm, specifically the Gibbs sampler, we estimate the parameters of chaotic maps. A complete statistical analysis is presented, the Gibbs sampler method is described in detail, and example applications are presented.
引用
收藏
页码:3535 / 3542
页数:8
相关论文
共 50 条
  • [31] RENORMALIZATION IN CHAOTIC AND PSEUDOCHAOTIC DYNAMICAL SYSTEMS
    Lowenstein, John H.
    QUANTUM FIELD THEORY AND BEYOND, 2008, : 183 - 205
  • [32] Analysis of chaotic dynamical systems with autoencoders
    Almazova, N.
    Barmparis, G. D.
    Tsironis, G. P.
    CHAOS, 2021, 31 (10)
  • [33] Exact statistics of chaotic dynamical systems
    Guralnik, Zachary
    CHAOS, 2008, 18 (03)
  • [34] Topological analysis of chaotic dynamical systems
    Gilmore, R
    REVIEWS OF MODERN PHYSICS, 1998, 70 (04) : 1455 - 1529
  • [35] Dynamic sensitivities in chaotic dynamical systems
    Shiraishi, Fumihide
    Hatoh, Yuji
    APPLIED MATHEMATICS AND COMPUTATION, 2007, 186 (02) : 1347 - 1359
  • [36] Use of chaotic dynamical systems in cryptography
    Schmitz, R
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2001, 338 (04): : 429 - 441
  • [37] Stabilization of the chaotic behavior of dynamical systems
    A. Yu. Loskutov
    A. R. Dzhanoev
    Doklady Physics, 2003, 48 : 580 - 582
  • [38] Study of Chaotic Dynamical Systems in Generally
    Yuan, Fang
    Jiang, Wei
    2011 3RD WORLD CONGRESS IN APPLIED COMPUTING, COMPUTER SCIENCE, AND COMPUTER ENGINEERING (ACC 2011), VOL 1, 2011, 1 : 308 - 313
  • [39] Riddling bifurcation in chaotic dynamical systems
    Lai, YC
    Grebogi, C
    Yorke, JA
    Venkataramani, SC
    PHYSICAL REVIEW LETTERS, 1996, 77 (01) : 55 - 58
  • [40] Stabilization of the chaotic behavior of dynamical systems
    Loskutov, AY
    Dzhanoev, AR
    DOKLADY PHYSICS, 2003, 48 (10) : 580 - 582