Bayesian reconstruction of chaotic dynamical systems

被引:59
|
作者
Meyer, R [1 ]
Christensen, N
机构
[1] Univ Auckland, Dept Stat, Auckland 1, New Zealand
[2] Carleton Coll, Northfield, MN 55057 USA
来源
PHYSICAL REVIEW E | 2000年 / 62卷 / 03期
关键词
D O I
10.1103/PhysRevE.62.3535
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We present a Bayesian approach to the problem of determining parameters of nonlinear models from time series of noisy data. Recent approaches to this problem have been statistically flawed. By applying a Markov chain Monte Carlo algorithm, specifically the Gibbs sampler, we estimate the parameters of chaotic maps. A complete statistical analysis is presented, the Gibbs sampler method is described in detail, and example applications are presented.
引用
收藏
页码:3535 / 3542
页数:8
相关论文
共 50 条
  • [21] A minimum principle for chaotic dynamical systems
    Bracken, P
    Góra, P
    Boyarsky, A
    PHYSICA D-NONLINEAR PHENOMENA, 2002, 166 (1-2) : 63 - 75
  • [22] Ergodic theory of chaotic dynamical systems
    Young, LS
    XIITH INTERNATIONAL CONGRESS OF MATHEMATICAL PHYSICS (ICMP '97), 1999, : 131 - 143
  • [23] Control and stabilization of dynamical chaotic systems
    Hamidouche, Baghdadi
    Guesmi, Kamel
    Essounbouli, Najib
    2021 7TH INTERNATIONAL CONFERENCE ON ENGINEERING AND EMERGING TECHNOLOGIES (ICEET 2021), 2021, : 1 - 6
  • [24] Regularized forecasting of chaotic dynamical systems
    Bollt, Erik M.
    CHAOS SOLITONS & FRACTALS, 2017, 94 : 8 - 15
  • [25] On control of nonlinear chaotic dynamical systems
    Magnitskii, NA
    Sidorov, SV
    NONLINEAR CONTROL SYSTEMS 2001, VOLS 1-3, 2002, : 783 - 787
  • [26] Multistable chaotic dynamical systems and philosophy
    Aboites, Vicente
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2008, 18 (06): : 1821 - 1824
  • [27] Orbits' statistics in chaotic dynamical systems
    Arnold, V.
    NONLINEARITY, 2008, 21 (07) : T109 - T112
  • [28] SRB MEASURES IN CHAOTIC DYNAMICAL SYSTEMS
    Lee, Hyundeok
    KOREAN JOURNAL OF MATHEMATICS, 2018, 26 (02): : 327 - 335
  • [29] Energy and information of chaotic dynamical systems
    Boyarsky, A
    Góra, P
    CHAOS SOLITONS & FRACTALS, 2001, 12 (09) : 1611 - 1618
  • [30] Comparing chaotic and random dynamical systems
    Young, Lai-Sang
    JOURNAL OF MATHEMATICAL PHYSICS, 2019, 60 (05)