Bayesian reconstruction of chaotic dynamical systems

被引:59
|
作者
Meyer, R [1 ]
Christensen, N
机构
[1] Univ Auckland, Dept Stat, Auckland 1, New Zealand
[2] Carleton Coll, Northfield, MN 55057 USA
来源
PHYSICAL REVIEW E | 2000年 / 62卷 / 03期
关键词
D O I
10.1103/PhysRevE.62.3535
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We present a Bayesian approach to the problem of determining parameters of nonlinear models from time series of noisy data. Recent approaches to this problem have been statistically flawed. By applying a Markov chain Monte Carlo algorithm, specifically the Gibbs sampler, we estimate the parameters of chaotic maps. A complete statistical analysis is presented, the Gibbs sampler method is described in detail, and example applications are presented.
引用
收藏
页码:3535 / 3542
页数:8
相关论文
共 50 条
  • [1] Fast Bayesian reconstruction of chaotic dynamical systems via extended Kalman filtering
    Meyer, R
    Christensen, N
    PHYSICAL REVIEW E, 2002, 65 (01): : 1 - 016206
  • [2] Efficient Bayesian inference for large chaotic dynamical systems
    Springer, Sebastian
    Haario, Heikki
    Susiluoto, Jouni
    Bibov, Aleksandr
    Davis, Andrew
    Marzouk, Youssef
    GEOSCIENTIFIC MODEL DEVELOPMENT, 2021, 14 (07) : 4319 - 4333
  • [3] LIMITATIONS OF DELAY RECONSTRUCTION FOR CHAOTIC DYNAMICAL-SYSTEMS
    MALINETSKII, GG
    POTAPOV, AB
    RAKHMANOV, AI
    PHYSICAL REVIEW E, 1993, 48 (02): : 904 - 912
  • [4] Markov chain Monte Carlo method in Bayesian reconstruction of dynamical systems from noisy chaotic time series
    Loskutov, E. M.
    Molkov, Ya. I.
    Mukhin, D. N.
    Feigin, A. M.
    PHYSICAL REVIEW E, 2008, 77 (06):
  • [5] A Bayesian nonparametric approach to reconstruction and prediction of random dynamical systems
    Merkatas, Christos
    Kaloudis, Konstantinos
    Hatjispyros, Spyridon J.
    CHAOS, 2017, 27 (06)
  • [6] Modified Bayesian approach for the reconstruction of dynamical systems from time series
    Mukhin, DN
    Feigin, AM
    Loskutov, EM
    Molkov, YI
    PHYSICAL REVIEW E, 2006, 73 (03):
  • [7] On Measure Chaotic Dynamical Systems
    Moghaddam, Faride Ghorbani
    Bahabadi, Alireza Zamani
    Honary, Bahman
    SAHAND COMMUNICATIONS IN MATHEMATICAL ANALYSIS, 2020, 17 (04): : 25 - 37
  • [8] DYNAMICAL SYMMETRY OF CHAOTIC SYSTEMS
    LI, JQ
    ZHU, JD
    GU, JN
    PHYSICAL REVIEW B, 1995, 52 (09): : 6458 - 6466
  • [9] Lightly chaotic dynamical systems
    Miranda, Annamaria
    APPLIED GENERAL TOPOLOGY, 2024, 25 (02): : 277 - 289
  • [10] On chaotic extensions of dynamical systems
    Fedeli, Alessandro
    Le Donne, Attilio
    TOPOLOGY AND ITS APPLICATIONS, 2011, 158 (04) : 594 - 596