Complexity and algorithms for injective edge-coloring in graphs

被引:16
|
作者
Foucaud, Florent [1 ,2 ,3 ]
Hocquard, Herve [2 ]
Lajou, Dimitri [2 ]
机构
[1] Univ Clermont Auvergne, LIMOS, CNRS, UMR 6158, Aubiere, France
[2] Univ Bordeaux, UMR5800, LaBRI, CNRS,Bordeaux INP, F-33400 Talence, France
[3] Univ Orleans, INSA Ctr Val Loire, LIFO EA 4022, F-45067 Orleans, France
关键词
Injective edge-coloring; Planar graphs; Subcubic graphs; Graph algorithms; Treewidth; NP-COMPLETENESS;
D O I
10.1016/j.ipl.2021.106121
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
An injective k-edge-coloring of a graph G is an assignment of colors, i.e. integers in {1, ..., k}, to the edges of G such that any two edges each incident with one distinct endpoint of a third edge, receive distinct colors. The problem of determining whether such a k-coloring exists is called-INJECTIVE k-EDGE-COLORING. We show that INJECTIVE 3-EDGE-COLORING is NP-complete, even for triangle-free cubic graphs, planar subcubic graphs of arbitrarily large girth, and planar bipartite subcubic graphs of girth 6. INJECTIVE 4-EDGE-COLORING remains NP-complete for cubic graphs. For any k >= 45, we show that INJECTIVE k-EDGE-COLORING remains NP-complete even for graphs of maximum degree at most 5 root 3k. In contrast with these negative results, we show that INJECTIVE k-EDGE-COLORING is linear-time solvable on graphs of bounded treewidth. Moreover, we show that all planar bipartite subcubic graphs of girth at least 16 are injectively 3-edge-colorable. In addition, any graph of maximum degree at most root k/2 is injectively k-edge-colorable. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Strong edge-coloring of (3, Δ)-bipartite graphs
    Bensmail, Julien
    Lagoutte, Aurelie
    Valicov, Petru
    DISCRETE MATHEMATICS, 2016, 339 (01) : 391 - 398
  • [42] EDGE-COLORING SERIES-PARALLEL GRAPHS
    CASPI, Y
    DEKEL, E
    JOURNAL OF ALGORITHMS, 1995, 18 (02) : 296 - 321
  • [43] On-line edge-coloring algorithms for degree-bounded bipartite graphs
    Taki, M
    Sugiura, M
    Kashiwabara, T
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2002, E85A (05): : 1062 - 1065
  • [44] List Edge-Coloring and Total Coloring in Graphs of Low Treewidth
    Bruhn, Henning
    Lang, Richard
    Stein, Maya
    JOURNAL OF GRAPH THEORY, 2016, 81 (03) : 272 - 282
  • [45] Edge-coloring critical graphs with high degree
    Miao, LY
    Wu, JL
    DISCRETE MATHEMATICS, 2002, 257 (01) : 169 - 172
  • [46] Facial packing edge-coloring of plane graphs
    Czap, Julius
    Jendrol, Stanislav
    DISCRETE APPLIED MATHEMATICS, 2016, 213 : 71 - 75
  • [47] Strong edge-coloring for cubic Hahn graphs
    Chang, Gerard Jennhwa
    Liu, Daphne Der-Fen
    DISCRETE MATHEMATICS, 2012, 312 (08) : 1468 - 1475
  • [48] Edge-Coloring Vertex-Weighting of Graphs
    Shiu, Wai-Chee
    Lau, Gee-Choon
    Ng, Ho-Kuen
    IRANIAN JOURNAL OF MATHEMATICAL SCIENCES AND INFORMATICS, 2021, 16 (01): : 1 - 13
  • [49] On the vertex distinguishing equitable edge-coloring of graphs
    Zhang, Zhong-fu
    Li, Mu-chun
    Yao, Bing
    Xu, Bo-gen
    Wang, Zhi-wen
    Li, Jing-wen
    ARS COMBINATORIA, 2008, 86 : 193 - 200
  • [50] EFFICIENT VERTEX-COLORING AND EDGE-COLORING OF OUTERPLANAR GRAPHS
    PROSKUROWSKI, A
    SYSLO, MM
    SIAM JOURNAL ON ALGEBRAIC AND DISCRETE METHODS, 1986, 7 (01): : 131 - 136