Complexity and algorithms for injective edge-coloring in graphs

被引:16
|
作者
Foucaud, Florent [1 ,2 ,3 ]
Hocquard, Herve [2 ]
Lajou, Dimitri [2 ]
机构
[1] Univ Clermont Auvergne, LIMOS, CNRS, UMR 6158, Aubiere, France
[2] Univ Bordeaux, UMR5800, LaBRI, CNRS,Bordeaux INP, F-33400 Talence, France
[3] Univ Orleans, INSA Ctr Val Loire, LIFO EA 4022, F-45067 Orleans, France
关键词
Injective edge-coloring; Planar graphs; Subcubic graphs; Graph algorithms; Treewidth; NP-COMPLETENESS;
D O I
10.1016/j.ipl.2021.106121
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
An injective k-edge-coloring of a graph G is an assignment of colors, i.e. integers in {1, ..., k}, to the edges of G such that any two edges each incident with one distinct endpoint of a third edge, receive distinct colors. The problem of determining whether such a k-coloring exists is called-INJECTIVE k-EDGE-COLORING. We show that INJECTIVE 3-EDGE-COLORING is NP-complete, even for triangle-free cubic graphs, planar subcubic graphs of arbitrarily large girth, and planar bipartite subcubic graphs of girth 6. INJECTIVE 4-EDGE-COLORING remains NP-complete for cubic graphs. For any k >= 45, we show that INJECTIVE k-EDGE-COLORING remains NP-complete even for graphs of maximum degree at most 5 root 3k. In contrast with these negative results, we show that INJECTIVE k-EDGE-COLORING is linear-time solvable on graphs of bounded treewidth. Moreover, we show that all planar bipartite subcubic graphs of girth at least 16 are injectively 3-edge-colorable. In addition, any graph of maximum degree at most root k/2 is injectively k-edge-colorable. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Edge-Coloring of Split Graphs
    de Almeida, Sheila Morais
    de Mello, Celia Picinin
    Morgana, Aurora
    ARS COMBINATORIA, 2015, 119 : 363 - 375
  • [22] Injective edge coloring of product graphs and some complexity results
    Bhanupriy, C. K.
    Dominic, Charles
    Sunitha, M. S.
    FILOMAT, 2023, 37 (12) : 3963 - 3983
  • [23] Injective Edge Coloring of Graphs
    Cardoso, Domingos M.
    Cerdeira, J. Orestes
    Dominic, Charles
    Cruz, J. Pedro
    FILOMAT, 2019, 33 (19) : 6411 - 6423
  • [24] Strong edge-coloring for jellyfish graphs
    Chang, Gerard J.
    Chen, Sheng-Hua
    Hsu, Chi-Yun
    Hung, Chia-Man
    Lai, Huei-Ling
    DISCRETE MATHEMATICS, 2015, 338 (12) : 2348 - 2355
  • [25] Strong edge-coloring of planar graphs
    Hudak, David
    Luzar, Borut
    Sotak, Roman
    Skrekovski, Riste
    DISCRETE MATHEMATICS, 2014, 324 : 41 - 49
  • [26] New linear-time algorithms for edge-coloring planar graphs
    Cole, Richard
    Kowalik, Lukasz
    ALGORITHMICA, 2008, 50 (03) : 351 - 368
  • [27] New Linear-Time Algorithms for Edge-Coloring Planar Graphs
    Richard Cole
    Łukasz Kowalik
    Algorithmica, 2008, 50 : 351 - 368
  • [28] Revisiting semistrong edge-coloring of graphs
    Luzar, Borut
    Mockovciakova, Martina
    Sotak, Roman
    JOURNAL OF GRAPH THEORY, 2024, 105 (04) : 612 - 632
  • [29] RECENT PROGRESS ON EDGE-COLORING GRAPHS
    HILTON, AJW
    DISCRETE MATHEMATICS, 1987, 64 (2-3) : 303 - 307
  • [30] ACYCLIC EDGE-COLORING OF PLANAR GRAPHS
    Basavaraju, Manu
    Chandran, L. Sunil
    Cohen, Nathann
    Havet, Frederic
    Mueller, Tobias
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2011, 25 (02) : 463 - 478