QUANTIZATION OF POISSON-HOPF STACKS ASSOCIATED WITH GROUP LIE BIALGEBRAS

被引:1
|
作者
Halbout, Gilles [1 ]
Tang, Xiang [2 ]
机构
[1] Univ Montpellier 2, Inst Math & Modelisat Montpellier, F-34095 Montpellier 5, France
[2] Washington Univ, Dept Math, St Louis, MO 63130 USA
基金
美国国家科学基金会;
关键词
stack; Poisson; Hopf; Lie bialgebra;
D O I
10.2140/pjm.2010.245.99
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a simply connected Poisson-Lie group and g its Lie bialgebra. Suppose that g is a group Lie bialgebra. This means that there is an action of a discrete group Gamma on G deforming the Poisson structure into coboundary equivalent ones. This induces the existence of a Poisson-Hopf algebra structure on the direct sum over Gamma of formal functions on G, with Poisson structures translated by Gamma. A quantization of this algebra can be obtained by taking the linear dual of a quantization of the Gamma Lie bialgebra g, which is the infinitesimal of a Gamma Poisson-Lie group. In this paper we find out an interesting structure on the dual Lie group G*. We prove that we can construct a stack of Poisson-Hopf algebras and prove the existence of the associated deformation quantization of it. This stack can be viewed as the function algebra on "the formal Poisson group" dual to the original Gamma Poisson-Lie group. To quantize this stack, we apply Drinfeld functors to quantization of the associated Gamma Lie bialgebra.
引用
收藏
页码:99 / 118
页数:20
相关论文
共 50 条
  • [1] Poisson-Hopf algebra deformations of Lie-Hamilton systems
    Ballesteros, Angel
    Campoamor-Stursberg, Rutwig
    Fernandez-Saiz, Eduardo
    Herranz, Francisco J.
    de Lucas, Javier
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2018, 51 (06)
  • [2] Classical deformations, Poisson-Lie contractions, and quantization of dual Lie bialgebras
    Ballesteros, A.
    Herranz, F. J.
    Del Olmo, M. A.
    Santander, M.
    Journal of Mathematical Physics, 36 (02):
  • [3] An Explicit Two Step Quantization of Poisson Structures and Lie Bialgebras
    Merkulov, Sergei
    Willwacher, Thomas
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2018, 364 (02) : 505 - 578
  • [4] An Explicit Two Step Quantization of Poisson Structures and Lie Bialgebras
    Sergei Merkulov
    Thomas Willwacher
    Communications in Mathematical Physics, 2018, 364 : 505 - 578
  • [5] CLASSICAL DEFORMATIONS, POISSON-LIE CONTRACTIONS, AND QUANTIZATION OF DUAL LIE BIALGEBRAS
    BALLESTEROS, A
    HERRANZ, FJ
    DELOLMO, MA
    SANTANDER, M
    JOURNAL OF MATHEMATICAL PHYSICS, 1995, 36 (02) : 631 - 640
  • [6] Quantization of Γ-Lie bialgebras
    Enriquez, Benjamin
    Halbout, Gilles
    JOURNAL OF ALGEBRA, 2008, 319 (09) : 3752 - 3769
  • [7] Mixed Product Poisson Structures Associated to Poisson Lie Groups and Lie Bialgebras
    Lu, Jiang-Hua
    Mouquin, Victor
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2017, 2017 (19) : 5919 - 5976
  • [8] QUANTIZATION OF LIE BIALGEBRAS
    RESHETIKHIN, N
    DUKE MATHEMATICAL JOURNAL, 1992, 67 (01) : 143 - 151
  • [9] Lie bialgebras of complex type and associated Poisson Lie groups
    Andrada, A.
    Barberis, M. L.
    Ovando, G.
    JOURNAL OF GEOMETRY AND PHYSICS, 2008, 58 (10) : 1310 - 1328
  • [10] Poisson-Hopf limit of quantum algebras
    Ballesteros, A.
    Celeghini, E.
    del Olmo, M. A.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (27)