Poisson-Hopf limit of quantum algebras

被引:6
|
作者
Ballesteros, A. [1 ]
Celeghini, E. [2 ,3 ]
del Olmo, M. A. [4 ]
机构
[1] Univ Burgos, Dept Fis, E-09006 Burgos, Spain
[2] Univ Florence, Dept Fis, I-50019 Florence, Italy
[3] Ist Nazl Fis Nucl, Sez Firenze, E-09006 Burgos, Spain
[4] Univ Valladolid, Dept Fis Teor, E-47005 Valladolid, Spain
关键词
GAUDIN MODELS;
D O I
10.1088/1751-8113/42/27/275202
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Poisson-Hopf analogue of an arbitrary quantum algebra U-z(g) is constructed by introducing a one-parameter family of quantizations U-z,U-h(g) depending explicitly on (h) over bar h and by taking the appropriate (h) over bar -> 0 limit. The q-Poisson analogues of the su(2) algebra are discussed and the novel su(q)(P) (3) case is introduced. The q-Serre relations are also extended to the Poisson limit. This approach opens the perspective for possible applications of higher rank q-deformed Hopf algebras in semiclassical contexts.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Deformation of semi-classical symmetries: Poisson-Hopf limit of quantum algebras
    Ballesteros, A.
    Celeghini, E.
    del Olmo, M. A.
    SYMMETRIES IN SCIENCE XIV, 2010, 237
  • [2] On the Dixmier-Moeglin equivalence for Poisson-Hopf algebras
    Launois, Stephane
    Sanchez, Omar Leon
    ADVANCES IN MATHEMATICS, 2019, 346 : 48 - 69
  • [3] Poisson-Hopf algebra deformations of Lie-Hamilton systems
    Ballesteros, Angel
    Campoamor-Stursberg, Rutwig
    Fernandez-Saiz, Eduardo
    Herranz, Francisco J.
    de Lucas, Javier
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2018, 51 (06)
  • [4] QUANTIZATION OF POISSON-HOPF STACKS ASSOCIATED WITH GROUP LIE BIALGEBRAS
    Halbout, Gilles
    Tang, Xiang
    PACIFIC JOURNAL OF MATHEMATICS, 2010, 245 (01) : 99 - 118
  • [5] Quantization of Poisson Hopf algebras
    Pulmann, Jan
    Severa, Pavol
    ADVANCES IN MATHEMATICS, 2022, 401
  • [6] Universal enveloping algebras of Poisson Hopf algebras
    Lu, Jiafeng
    Wang, Xingting
    Zhuang, Guangbin
    JOURNAL OF ALGEBRA, 2015, 426 : 92 - 136
  • [7] Universal coacting Poisson Hopf algebras
    Agore, A. L.
    MANUSCRIPTA MATHEMATICA, 2021, 165 (1-2) : 255 - 268
  • [8] Universal coacting Poisson Hopf algebras
    A. L. Agore
    manuscripta mathematica, 2021, 165 : 255 - 268
  • [9] Unimodular graded Poisson Hopf algebras
    Brown, Kenneth A.
    Zhang, James J.
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2018, 50 (05) : 887 - 898
  • [10] Poisson algebras associated to quasi-Hopf algebras
    Enriquez, B
    Halbout, G
    ADVANCES IN MATHEMATICS, 2004, 186 (02) : 363 - 395