QUANTIZATION OF POISSON-HOPF STACKS ASSOCIATED WITH GROUP LIE BIALGEBRAS

被引:1
|
作者
Halbout, Gilles [1 ]
Tang, Xiang [2 ]
机构
[1] Univ Montpellier 2, Inst Math & Modelisat Montpellier, F-34095 Montpellier 5, France
[2] Washington Univ, Dept Math, St Louis, MO 63130 USA
基金
美国国家科学基金会;
关键词
stack; Poisson; Hopf; Lie bialgebra;
D O I
10.2140/pjm.2010.245.99
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a simply connected Poisson-Lie group and g its Lie bialgebra. Suppose that g is a group Lie bialgebra. This means that there is an action of a discrete group Gamma on G deforming the Poisson structure into coboundary equivalent ones. This induces the existence of a Poisson-Hopf algebra structure on the direct sum over Gamma of formal functions on G, with Poisson structures translated by Gamma. A quantization of this algebra can be obtained by taking the linear dual of a quantization of the Gamma Lie bialgebra g, which is the infinitesimal of a Gamma Poisson-Lie group. In this paper we find out an interesting structure on the dual Lie group G*. We prove that we can construct a stack of Poisson-Hopf algebras and prove the existence of the associated deformation quantization of it. This stack can be viewed as the function algebra on "the formal Poisson group" dual to the original Gamma Poisson-Lie group. To quantize this stack, we apply Drinfeld functors to quantization of the associated Gamma Lie bialgebra.
引用
收藏
页码:99 / 118
页数:20
相关论文
共 50 条
  • [21] Extensions of Hopf algebras and Lie bialgebras
    Masuoka, A
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 352 (08) : 3837 - 3879
  • [22] QUANTIZATION OF QUASI-LIE BIALGEBRAS
    Enriquez, Benjamin
    Halbout, Gilles
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 23 (03) : 611 - 653
  • [23] On the Dixmier-Moeglin equivalence for Poisson-Hopf algebras
    Launois, Stephane
    Sanchez, Omar Leon
    ADVANCES IN MATHEMATICS, 2019, 346 : 48 - 69
  • [24] On quantization of quasi-Lie bialgebras
    Sakalos, Stefan
    Severa, Pavol
    Selecta Mathematica-New Series, 2015, 21 (02): : 649 - 725
  • [25] On quantization of quasi-Lie bialgebras
    Štefan Sakáloš
    Pavol Ševera
    Selecta Mathematica, 2015, 21 : 649 - 725
  • [26] Poisson sigma models and Lie bialgebras
    Petr, Ivo
    7TH INTERNATIONAL CONFERENCE ON QUANTUM THEORY AND SYMMETRIES (QTS7), 2012, 343
  • [27] Quantization of Lie bialgebras and shuffle algebras of Lie algebras
    Enriques B.
    Selecta Mathematica, 2001, 7 (3) : 321 - 407
  • [28] 关于μH中的Lie双代数和余Poisson-Hopf代数(英文)
    岑建苗
    数学杂志, 2000, (01) : 29 - 36
  • [29] Poisson–Lie T-Duality¶for Quasitriangular Lie Bialgebras
    E. J. Beggs
    Shahn Majid
    Communications in Mathematical Physics, 2001, 220 : 455 - 488
  • [30] Poisson-Hopf deformations of Lie-Hamilton systems revisited: deformed superposition rules and applications to the oscillator algebra
    Ballesteros, Angel
    Campoamor-Stursberg, Rutwig
    Fernandez-Saiz, Eduardo
    Herranz, Francisco J.
    Lucas, Javier de
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2021, 54 (20)