State of the art in nonlinear dynamical system identification using Artificial Neural Networks

被引:0
|
作者
Todorovic, Nenad
Klan, Petr
机构
关键词
artificial neural networks; nonlinear dynamical systems; nonlinear identification;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper covers the state of the art in nonlinear dynamical system identification using Artificial Neural Networks (ANN). The main approaches in the last two decades are presented in unified framework. ANN have unique characteristics, which enable them to model nonlinear dynamical systems. The main problems with the choice of ANN model structure are considered and commonly used identification schemes are proposed. A procedure for derivation of parameter estimation law using Lyapunov synthesis approach, which guarantees stability and convergence of the overall identification scheme, is presented.
引用
收藏
页码:103 / 108
页数:6
相关论文
共 50 条
  • [41] On the ''identification and control of dynamical systems using neural networks''
    RiosPatron, E
    Braatz, RD
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 1997, 8 (02): : 452 - 452
  • [42] System identification for nonlinear maneuvering of large tankers using artificial neural network
    Rajesh, G.
    Bhattacharyya, S. K.
    [J]. APPLIED OCEAN RESEARCH, 2008, 30 (04) : 256 - 263
  • [43] A state-of-the-art survey of predicting students' performance using artificial neural networks
    Xiao, Wen
    Hu, Juan
    [J]. ENGINEERING REPORTS, 2023, 5 (08)
  • [44] Nonlinear controlling of artificial muscle system with neural networks
    Tian, SP
    Ding, GQ
    Yan, DT
    Lin, LM
    Shi, M
    [J]. IEEE ROBIO 2004: Proceedings of the IEEE International Conference on Robotics and Biomimetics, 2004, : 56 - 59
  • [45] Identification of nonlinear dynamical systems using a higher order multi-layer neural networks
    Liu, Jiancheng
    Tan, Xuping
    [J]. 2006 8TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING, VOLS 1-4, 2006, : 1910 - +
  • [46] Contro of nonlinear dynamical systems using neural networks .2. Observability, identification, and control
    Levin, AU
    Narendra, KS
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 1996, 7 (01): : 30 - 42
  • [47] Simultaneous parameter identification of a heterogeneous aquifer system using artificial neural networks
    Halil Karahan
    M. Tamer Ayvaz
    [J]. Hydrogeology Journal, 2008, 16 : 817 - 827
  • [48] Aircraft System Identification using Artificial Neural Networks with Flight Test Data
    Harris, Joshua
    Arthurs, Frank
    Henrickson, James V.
    Valasek, John
    [J]. 2016 INTERNATIONAL CONFERENCE ON UNMANNED AIRCRAFT SYSTEMS (ICUAS), 2016, : 679 - 688
  • [49] System identification for the Hodgkin-Huxley model using artificial neural networks
    Saggar, Manish
    Mericli, Tekin
    Andoni, Sari
    Miikkulainen, Risto
    [J]. 2007 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-6, 2007, : 2239 - +
  • [50] Simultaneous parameter identification of a heterogeneous aquifer system using artificial neural networks
    Karahan, Halil
    Ayvaz, M. Tamer
    [J]. HYDROGEOLOGY JOURNAL, 2008, 16 (05) : 817 - 827