Simultaneous parameter identification of a heterogeneous aquifer system using artificial neural networks

被引:34
|
作者
Karahan, Halil [1 ,2 ]
Ayvaz, M. Tamer [2 ]
机构
[1] Pamukkale Univ, Insaat Muhendisligi Bolumu, TR-20070 Denizli, Turkey
[2] Pamukkale Univ, Dept Civil Engn, TR-20070 Denizli, Turkey
关键词
parameter identification; inverse modeling; neural networks; multi-parameters; groundwater flow;
D O I
10.1007/s10040-008-0279-0
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
An artificial neural network (ANN) model is proposed for the simultaneous determination of transmissivity and storativity distributions of a heterogeneous aquifer system. ANNs may be useful tools for parameter identification problems due to their ability to solve complex nonlinear problems. As an extension of previous study-Karahan H, Ayvaz MT (2006) Forecasting aquifer parameters using artificial neural networks, J Porous Media 9(5):429-444-the performance of the proposed ANN model is tested on a two-dimensional hypothetical aquifer system for transient flow conditions. In the proposed ANN model, Cartesian coordinates of observation wells, associated piezometric heads and observation time are used as inputs while corresponding transmissivity and storativity values are used as outputs. The training, validation and testing processes of the ANN model are performed under two scenarios. In scenario 1, all the sampled data are used through the simulation time. However, in the scenario 2, there are data gaps due to irregular observations. By using the determined synaptic network weights, transmissivity and storativity distributions are predicted. In addition, the performance of the proposed ANN is tested for different noise data conditions. Results showed that the developed ANN model may be used in simultaneous aquifer parameter estimation problems.
引用
收藏
页码:817 / 827
页数:11
相关论文
共 50 条
  • [1] Simultaneous parameter identification of a heterogeneous aquifer system using artificial neural networks
    Halil Karahan
    M. Tamer Ayvaz
    [J]. Hydrogeology Journal, 2008, 16 : 817 - 827
  • [2] Parameter identification of a tumor model using artificial neural networks
    Puskas, Melania
    Drexler, Daniel Andras
    [J]. 2021 IEEE 19TH WORLD SYMPOSIUM ON APPLIED MACHINE INTELLIGENCE AND INFORMATICS (SAMI 2021), 2021, : 443 - 447
  • [3] Forecasting aquifer parameters using artificial neural networks
    Karahan, Halil
    Ayvaz, M. Tamer
    [J]. JOURNAL OF POROUS MEDIA, 2006, 9 (05) : 429 - 444
  • [4] Poroelastic model parameter identification using artificial neural networks: on the effects of heterogeneous porosity and solid matrix Poisson ratio
    Hamidreza Dehghani
    Andreas Zilian
    [J]. Computational Mechanics, 2020, 66 : 625 - 649
  • [5] Poroelastic model parameter identification using artificial neural networks: on the effects of heterogeneous porosity and solid matrix Poisson ratio
    Dehghani, Hamidreza
    Zilian, Andreas
    [J]. COMPUTATIONAL MECHANICS, 2020, 66 (03) : 625 - 649
  • [6] Parameter Identification of Cutting Forces in Crankshaft Grinding Using Artificial Neural Networks
    Pavlenko, Ivan
    Saga, Milan
    Kuric, Ivan
    Kotliar, Alexey
    Basova, Yevheniia
    Trojanowska, Justyna
    Ivanov, Vitalii
    [J]. MATERIALS, 2020, 13 (23) : 1 - 12
  • [7] CHARACTERIZATION OF AQUIFER PROPERTIES USING ARTIFICIAL NEURAL NETWORKS - NEURAL KRIGING
    RIZZO, DM
    DOUGHERTY, DE
    [J]. WATER RESOURCES RESEARCH, 1994, 30 (02) : 483 - 497
  • [8] Modulation format identification in heterogeneous fiber-optic networks using artificial neural networks
    Khan, Faisal Nadeem
    Zhou, Yudi
    Lau, Alan Pak Tao
    Lu, Chao
    [J]. OPTICS EXPRESS, 2012, 20 (11): : 12422 - 12431
  • [9] Aquifer parameter estimation using genetic algorithms and neural networks
    Lingireddy, S
    [J]. CIVIL ENGINEERING AND ENVIRONMENTAL SYSTEMS, 1998, 15 (02) : 125 - 144
  • [10] A diagnosis approach for parameter deviations in linear system using artificial neural networks
    Manikandan, V.
    Devarajan, N.
    Ramakrishnan, K.
    [J]. 2006 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY, VOLS 1-6, 2006, : 915 - +