Modulational instability in the anharmonic Peyrard-Bishop model of DNA

被引:28
|
作者
Tabi, C. B. [1 ,2 ]
Mohamadou, A. [1 ,3 ]
Kofane, T. C. [1 ]
机构
[1] Univ Yaounde I, Fac Sci, Dept Phys, Lab Mech, Yaounde, Cameroon
[2] African Inst Math Sci, ZA-7945 Muizenberg, South Africa
[3] Univ Douala, Fac Sci, Dept Phys, Condensed Matter Lab, Douala, Cameroon
来源
EUROPEAN PHYSICAL JOURNAL B | 2010年 / 74卷 / 02期
关键词
BASE-ROTATOR MODEL; DOUBLE HELICES; NONLINEAR MODEL; TOPOLOGICAL SOLITONS; ENERGY LOCALIZATION; DENATURATION; DYNAMICS; EXCITATIONS; TRANSITION; LATTICES;
D O I
10.1140/epjb/e2010-00062-1
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We report on the presence of modulational instability and the generation of soliton-like excitations in DNA nucleotides. Taking the Peyrard-Bishop-Dauxois model of DNA dynamics as an example, we show that the original difference equation for the DNA dynamics can be reduced to the Salerno equation. We derive the MI criterion in this case. The effect of the anharmonic stacking term on the domain of instability/stability is pointed out. Numerical simulations show the validity of the analytical approach with the generation of wave packets provided that the wave numbers fall in the instability domain. The impact of the anharmonic stacking interactions is investigated and these are found to give rise to a spectrum of behaviours which corroborates experimental facts.
引用
收藏
页码:151 / 158
页数:8
相关论文
共 50 条
  • [31] A novel approach for the potential parameters selection of Peyrard-Bishop model
    Behnia, S.
    Panahi, M.
    Mobaraki, A.
    Akhshani, A.
    PHYSICS LETTERS A, 2011, 375 (07) : 1092 - 1096
  • [32] Mean Lyapunov exponent approach for the helicoidal Peyrard-Bishop model
    Behnia, S.
    Panahi, M.
    Akhshani, A.
    Mobaraki, A.
    PHYSICS LETTERS A, 2011, 375 (41) : 3574 - 3578
  • [33] Localization and delocalization of energy in a Peyrard-Bishop chain
    Silva, J. M.
    Drigo Filho, E.
    Ruggiero, J. R.
    EUROPEAN PHYSICAL JOURNAL E, 2009, 29 (02): : 245 - 251
  • [34] Stationary solutions for a modified Peyrard-Bishop DNA model with up to third-neighbor interactions
    Z. Rapti
    The European Physical Journal E, 2010, 32 : 209 - 216
  • [35] Analytical and numerical study of the DNA dynamics arising in oscillator-chain of Peyrard-Bishop model
    Ali, Khalid K.
    Cattani, Carlo
    Gomez-Aguilar, J. F.
    Baleanu, Dumitru
    Osman, M. S.
    CHAOS SOLITONS & FRACTALS, 2020, 139
  • [36] Localization and delocalization of energy in a Peyrard-Bishop chain
    J. M. Silva
    E. Drigo Filho
    J. R. Ruggiero
    The European Physical Journal E, 2009, 29 : 245 - 251
  • [37] Stationary solutions for a modified Peyrard-Bishop DNA model with up to third-neighbor interactions
    Rapti, Z.
    EUROPEAN PHYSICAL JOURNAL E, 2010, 32 (02): : 209 - 216
  • [38] Formation, control, and dynamics of N localized structures in the Peyrard-Bishop model
    Zamora-Sillero, Elias
    Shapovalov, A. V.
    Esteban, Francisco J.
    PHYSICAL REVIEW E, 2007, 76 (06):
  • [39] Accurate prediction of DNA opening profiles by Peyrard-Bishop nonlinear dynamic simulations
    Choi, C. H.
    Kalosakas, G.
    Rasmussen, K. O.
    Bishop, A. R.
    Usheva, A.
    PROCEEDINGS OF THE FOURTH INTERNATIONAL CONFERENCE ON BIOINFORMATICS OF GENOME REGULATION AND STRUCTURE, VOL 1, 2004, : 46 - 49
  • [40] Forming localized waves of the nonlinearity of the DNA dynamics arising in oscillator-chain of Peyrard-Bishop model
    Manafian, Jalil
    Ilhan, Onur Alp
    Mohammed, Sizar Abid
    AIMS MATHEMATICS, 2020, 5 (03): : 2461 - 2483