Controlling of local search methods' parameters in memetic algorithms using the principles of simulated annealing

被引:26
|
作者
Pechac, Peter [1 ]
Saga, Milan [1 ]
机构
[1] Univ Zilina, Fac Mech Engn, Univ 1, Zilina 01026, Slovakia
关键词
memetic algorithm; simulated annealing; genetic algorithm; Hooke-Jeeves method; Nelder-Mead method; Day-Juan nonlinear conjugate gradient method;
D O I
10.1016/j.proeng.2016.01.176
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In simulated annealing the probability of transition to a state with worse value of objective function is guided by a cooling schedule. The more iterations are spent, the more strict the acceptance probability function becomes. In the end of the optimization process, the probability of transfer to worse state approaches zero. In this paper the principles of cooling schedules are used to control the parameters of local search methods in the memetic algorithm. The memetic algorithm in this paper is a combination of genetic algorithm, Hooke-Jeeves method, Nelder-Mead simplex method and Dai-Yuan version of nonlinear conjugate gradient method. The controlled parameter of Hooke-Jeeves method is the radius r, for Nelder Mead method the size of edge of the simplex and the length of step for nonlinear conjugate gradient method. (C) 2016 The Authors. Published by Elsevier Ltd.
引用
收藏
页码:70 / 76
页数:7
相关论文
共 50 条
  • [1] Adaptive local search parameters for real-coded memetic algorithms
    Molina, D
    Herrera, F
    Lozano, M
    2005 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-3, PROCEEDINGS, 2005, : 888 - 895
  • [2] Local learning and search in memetic algorithms
    Guimaraes, Frederico G.
    Wanner, Elizabeth F.
    Campelo, Felipe
    Takahashi, Ricardo H. C.
    Igarashi, Hajime
    Lowther, David A.
    Ramirez, Jaime A.
    2006 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-6, 2006, : 2921 - +
  • [3] Memetic Algorithm for Intense Local Search Methods Using Local Search Chains
    Molina, Daniel
    Lozano, Manuel
    Garcia-Martinez, C.
    Herrera, Francisco
    HYBRID METAHEURISTICS, PROCEEDINGS, 2008, 5296 : 58 - +
  • [4] Solving channel assignment problems using local search methods and simulated annealing
    Wang, Lipo
    Sally Ng Sa Lee
    Wong Yow Hing
    INDEPENDENT COMPONENT ANALYSES, WAVELETS, NEURAL NETWORKS, BIOSYSTEMS, AND NANOENGINEERING IX, 2011, 8058
  • [5] Local search algorithms for memetic algorithms: understanding behaviors using biological intelligence
    Luca, Beatrice
    Craus, Mitica
    2018 22ND INTERNATIONAL CONFERENCE ON SYSTEM THEORY, CONTROL AND COMPUTING (ICSTCC), 2018, : 553 - 558
  • [6] Iterated local search and simulated annealing algorithms for the inventory routing problem
    Alvarez, Aldair
    Munari, Pedro
    Morabito, Reinaldo
    INTERNATIONAL TRANSACTIONS IN OPERATIONAL RESEARCH, 2018, 25 (06) : 1785 - 1809
  • [7] Identification of Bioprocesses Using Random Search and Simulated Annealing Algorithms
    Saad Saoud, Lyes
    Rahmoune, Faycal
    Tourtchine, Victor
    Baddari, Kamel
    2012 6TH INTERNATIONAL CONFERENCE ON SCIENCES OF ELECTRONICS, TECHNOLOGIES OF INFORMATION AND TELECOMMUNICATIONS (SETIT), 2012, : 65 - 68
  • [8] Using memetic algorithms with guided local search to solve assembly sequence planning
    Tseng, Hwai-En
    Wang, Wen-Pai
    Shih, Hsun-Yi
    EXPERT SYSTEMS WITH APPLICATIONS, 2007, 33 (02) : 451 - 467
  • [9] Restarting search algorithms with applications to simulated annealing
    Mendivil, F
    Shonkwiler, R
    Spruill, MC
    ADVANCES IN APPLIED PROBABILITY, 2001, 33 (01) : 242 - 259
  • [10] A Multi-Objective Simulated Annealing Local Search Algorithm in Memetic CENSGA: Application to Vaccination Allocation for Influenza
    Alkhamis, Asma Khalil
    Hosny, Manar
    SUSTAINABILITY, 2023, 15 (21)