Controlling of local search methods' parameters in memetic algorithms using the principles of simulated annealing

被引:26
|
作者
Pechac, Peter [1 ]
Saga, Milan [1 ]
机构
[1] Univ Zilina, Fac Mech Engn, Univ 1, Zilina 01026, Slovakia
关键词
memetic algorithm; simulated annealing; genetic algorithm; Hooke-Jeeves method; Nelder-Mead method; Day-Juan nonlinear conjugate gradient method;
D O I
10.1016/j.proeng.2016.01.176
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In simulated annealing the probability of transition to a state with worse value of objective function is guided by a cooling schedule. The more iterations are spent, the more strict the acceptance probability function becomes. In the end of the optimization process, the probability of transfer to worse state approaches zero. In this paper the principles of cooling schedules are used to control the parameters of local search methods in the memetic algorithm. The memetic algorithm in this paper is a combination of genetic algorithm, Hooke-Jeeves method, Nelder-Mead simplex method and Dai-Yuan version of nonlinear conjugate gradient method. The controlled parameter of Hooke-Jeeves method is the radius r, for Nelder Mead method the size of edge of the simplex and the length of step for nonlinear conjugate gradient method. (C) 2016 The Authors. Published by Elsevier Ltd.
引用
收藏
页码:70 / 76
页数:7
相关论文
共 50 条
  • [21] Container loading for nonorthogonal objects: an approximation using local search and simulated annealing
    Torra, Vicenc
    Cano, Isaac
    Miyamoto, Sadaaki
    Endo, Yasunori
    SOFT COMPUTING, 2010, 14 (05) : 537 - 544
  • [22] Pipelining Memetic Algorithms, Constraint Satisfaction, and Local Search for Course Timetabling
    Conant-Pablos, Santiago E.
    Magana-Lozano, Dulce J.
    Terashima-Marin, Hugo
    MICAI 2009: ADVANCES IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2009, 5845 : 408 - 419
  • [23] HCS: A New Local Search Strategy for Memetic Multiobjective Evolutionary Algorithms
    Lara, Adriana
    Sanchez, Gustavo
    Coello Coello, Carlos A.
    Schuetze, Oliver
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2010, 14 (01) : 112 - 132
  • [24] Container loading for nonorthogonal objects: an approximation using local search and simulated annealing
    Vicenç Torra
    Isaac Cano
    Sadaaki Miyamoto
    Yasunori Endo
    Soft Computing, 2010, 14 : 537 - 544
  • [25] Hybrid search for genetic algorithms. Combining genetic algorithms, TABU search, and simulated annealing
    Kido, Takashi
    Kitano, Hiroaki
    Nakanishi, Masakuzo
    Australian Electronics Engineering, 1994, 27 (02):
  • [26] Local search with quadratic approximations into memetic algorithms for optimization with multiple criteria
    Wanner, Elizabeth F.
    Guimaraes, Frederico G.
    Takahashi, Ricardo H. C.
    Fleming, Peter J.
    EVOLUTIONARY COMPUTATION, 2008, 16 (02) : 185 - 224
  • [27] How to Choose Solutions for Local Search in Multiobjective Combinatorial Memetic Algorithms
    Ishibuchi, Hisao
    Hitotsuyanagi, Yasuhiro
    Wakamatsu, Yoshihiko
    Nojima, Yusuke
    PARALLEL PROBLEMS SOLVING FROM NATURE - PPSN XI, PT I, 2010, 6238 : 516 - 525
  • [28] Trihalomethane species forecast using optimization methods: Genetic algorithms and simulated annealing
    Lin, YC
    Yeh, HD
    JOURNAL OF COMPUTING IN CIVIL ENGINEERING, 2005, 19 (03) : 248 - 257
  • [29] Evolutionary algorithms, Simulated Annealing, and Tabu Search: A comparative study
    Youssef, H
    Sait, SM
    Adiche, H
    APPLICATIONS AND SCIENCE OF NEURAL NETWORKS, FUZZY SYSTEMS, AND EVOLUTIONARY COMPUTATION, 1998, 3455 : 94 - 105
  • [30] Evolutionary algorithms, simulated annealing and tabu search: a comparative study
    Youssef, H
    Sait, SM
    Adiche, H
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2001, 14 (02) : 167 - 181