Local search algorithms for memetic algorithms: understanding behaviors using biological intelligence

被引:0
|
作者
Luca, Beatrice [1 ]
Craus, Mitica [1 ]
机构
[1] Fac Automat Control & Comp Engn, Dept Comp Sci, Iasi, Romania
关键词
memetic algorithms; evolutionary algorithms; local search algorithms; mechanical and biological intelligence;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Memetic Algorithms (MAs) are a class of stochastic global search heuristics in which Evolutionary Algorithms (EAs) - based approaches are combined usually with heuristic local searches. This hybridization is meant to reach solutions that would otherwise be unreachable by evolution or a local method alone. In this work, we propose three Local Search (LS) algorithms for hybridization with an existing Evolutionary Algorithm with Pareto ranking in order to define biological intelligence using the concepts of useful and utility and therefore to zoom on the basin of attraction of promising realistic solutions. Our experimental results with these memetic algorithms in the game of Checkers show how we can learn the organization of behaviors into paths of behaviors of different lengths and frequencies and then reveal the true nature of these behaviors.
引用
收藏
页码:553 / 558
页数:6
相关论文
共 50 条
  • [1] Local learning and search in memetic algorithms
    Guimaraes, Frederico G.
    Wanner, Elizabeth F.
    Campelo, Felipe
    Takahashi, Ricardo H. C.
    Igarashi, Hajime
    Lowther, David A.
    Ramirez, Jaime A.
    2006 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-6, 2006, : 2921 - +
  • [2] Using memetic algorithms with guided local search to solve assembly sequence planning
    Tseng, Hwai-En
    Wang, Wen-Pai
    Shih, Hsun-Yi
    EXPERT SYSTEMS WITH APPLICATIONS, 2007, 33 (02) : 451 - 467
  • [3] Memetic Algorithms with Local Search Chains in R: The Rmalschains Package
    Bergmeir, Christoph
    Molina, Daniel
    Benitez, Jose M.
    JOURNAL OF STATISTICAL SOFTWARE, 2016, 75 (04):
  • [4] Memetic Algorithms for Continuous Optimisation Based on Local Search Chains
    Molina, Daniel
    Lozano, Manuel
    Garcia-Martinez, Carlos
    Herrera, Francisco
    EVOLUTIONARY COMPUTATION, 2010, 18 (01) : 27 - 63
  • [5] Local Stochastic Differentiable Architecture Search for Memetic Neuroevolution Algorithms
    Karns, Joshua
    Desell, Travis
    PROCEEDINGS OF THE 2023 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION, GECCO 2023 COMPANION, 2023, : 2123 - 2127
  • [6] Controlling of local search methods' parameters in memetic algorithms using the principles of simulated annealing
    Pechac, Peter
    Saga, Milan
    20TH INTERNATIONAL CONFERENCE MACHINE MODELING AND SIMULATIONS, MMS 2015, 2016, 136 : 70 - 76
  • [7] Pipelining Memetic Algorithms, Constraint Satisfaction, and Local Search for Course Timetabling
    Conant-Pablos, Santiago E.
    Magana-Lozano, Dulce J.
    Terashima-Marin, Hugo
    MICAI 2009: ADVANCES IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2009, 5845 : 408 - 419
  • [8] HCS: A New Local Search Strategy for Memetic Multiobjective Evolutionary Algorithms
    Lara, Adriana
    Sanchez, Gustavo
    Coello Coello, Carlos A.
    Schuetze, Oliver
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2010, 14 (01) : 112 - 132
  • [9] Adaptive local search parameters for real-coded memetic algorithms
    Molina, D
    Herrera, F
    Lozano, M
    2005 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-3, PROCEEDINGS, 2005, : 888 - 895
  • [10] Local search with quadratic approximations into memetic algorithms for optimization with multiple criteria
    Wanner, Elizabeth F.
    Guimaraes, Frederico G.
    Takahashi, Ricardo H. C.
    Fleming, Peter J.
    EVOLUTIONARY COMPUTATION, 2008, 16 (02) : 185 - 224