Optimizing hyperparameters of deep reinforcement learning for autonomous driving based on whale optimization algorithm

被引:42
|
作者
Ashraf, Nesma M. [1 ]
Mostafa, Reham R. [2 ]
Sakr, Rasha H. [1 ]
Rashad, M. Z. [1 ]
机构
[1] Mansoura Univ, Fac Comp & Informat Sci, Comp Sci Dept, Mansoura, Egypt
[2] Mansoura Univ, Fac Comp & Informat Sci, Informat Syst Dept, Mansoura, Egypt
来源
PLOS ONE | 2021年 / 16卷 / 06期
关键词
LEVEL; GAME; GO;
D O I
10.1371/journal.pone.0252754
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Deep Reinforcement Learning (DRL) enables agents to make decisions based on a well-designed reward function that suites a particular environment without any prior knowledge related to a given environment. The adaptation of hyperparameters has a great impact on the overall learning process and the learning processing times. Hyperparameters should be accurately estimated while training DRL algorithms, which is one of the key challenges that we attempt to address. This paper employs a swarm-based optimization algorithm, namely the Whale Optimization Algorithm (WOA), for optimizing the hyperparameters of the Deep Deterministic Policy Gradient (DDPG) algorithm to achieve the optimum control strategy in an autonomous driving control problem. DDPG is capable of handling complex environments, which contain continuous spaces for actions. To evaluate the proposed algorithm, the Open Racing Car Simulator (TORCS), a realistic autonomous driving simulation environment, was chosen to its ease of design and implementation. Using TORCS, the DDPG agent with optimized hyperparameters was compared with a DDPG agent with reference hyperparameters. The experimental results showed that the DDPG's hyperparameters optimization leads to maximizing the total rewards, along with testing episodes and maintaining a stable driving policy.
引用
收藏
页数:24
相关论文
共 50 条
  • [41] Course Evaluation Based on Deep Learning and SSA Hyperparameters Optimization
    El-Demerdash, Alaa A.
    Hussein, Sherif E.
    Zaki, John F. W.
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 71 (01): : 941 - 959
  • [42] Efficient Deep Reinforcement Learning With Imitative Expert Priors for Autonomous Driving
    Huang, Zhiyu
    Wu, Jingda
    Lv, Chen
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (10) : 7391 - 7403
  • [43] Model-free Deep Reinforcement Learning for Urban Autonomous Driving
    Chen, Jianyu
    Yuan, Bodi
    Tomizuka, Masayoshi
    2019 IEEE INTELLIGENT TRANSPORTATION SYSTEMS CONFERENCE (ITSC), 2019, : 2765 - 2771
  • [44] Deep Reinforcement Learning on Autonomous Driving Policy With Auxiliary Critic Network
    Wu, Yuanqing
    Liao, Siqin
    Liu, Xiang
    Li, Zhihang
    Lu, Renquan
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 34 (07) : 3680 - 3690
  • [45] Deep Reinforcement Learning for Autonomous Driving in Amazon Web Services DeepRacer
    Petryshyn, Bohdan
    Postupaiev, Serhii
    Ben Bari, Soufiane
    Ostreika, Armantas
    INFORMATION, 2024, 15 (02)
  • [46] A Comprehensive Survey on the Application of Deep and Reinforcement Learning Approaches in Autonomous Driving
    Ben Elallid, Badr
    Benamar, Nabil
    Hafid, Abdelhakim Senhaji
    Rachidi, Tajjeeddine
    Mrani, Nabil
    JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES, 2022, 34 (09) : 7366 - 7390
  • [47] Deep reinforcement learning navigation via decision transformer in autonomous driving
    Ge, Lun
    Zhou, Xiaoguang
    Li, Yongqiang
    Wang, Yongcong
    FRONTIERS IN NEUROROBOTICS, 2024, 18
  • [48] Improved Deep Reinforcement Learning with Expert Demonstrations for Urban Autonomous Driving
    Liu, Haochen
    Huang, Zhiyu
    Wu, Jingda
    Lv, Chen
    2022 IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV), 2022, : 921 - 928
  • [49] WISEMOVE: A Framework to Investigate Safe Deep Reinforcement Learning for Autonomous Driving
    Lee, Jaeyoung
    Balakrishnan, Aravind
    Gaurav, Ashish
    Czarnecki, Krzysztof
    Sedwards, Sean
    QUANTITATIVE EVALUATION OF SYSTEMS (QEST 2019), 2019, 11785 : 350 - 354
  • [50] Trajectory optimization algorithm of skipping missile based on deep reinforcement learning
    Gong K.
    Wei H.
    Li J.
    Song X.
    Li Y.
    Li Y.
    Zhang Y.
    Beijing Hangkong Hangtian Daxue Xuebao/Journal of Beijing University of Aeronautics and Astronautics, 2023, 49 (06): : 1383 - 1393