Optimizing hyperparameters of deep reinforcement learning for autonomous driving based on whale optimization algorithm

被引:42
|
作者
Ashraf, Nesma M. [1 ]
Mostafa, Reham R. [2 ]
Sakr, Rasha H. [1 ]
Rashad, M. Z. [1 ]
机构
[1] Mansoura Univ, Fac Comp & Informat Sci, Comp Sci Dept, Mansoura, Egypt
[2] Mansoura Univ, Fac Comp & Informat Sci, Informat Syst Dept, Mansoura, Egypt
来源
PLOS ONE | 2021年 / 16卷 / 06期
关键词
LEVEL; GAME; GO;
D O I
10.1371/journal.pone.0252754
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Deep Reinforcement Learning (DRL) enables agents to make decisions based on a well-designed reward function that suites a particular environment without any prior knowledge related to a given environment. The adaptation of hyperparameters has a great impact on the overall learning process and the learning processing times. Hyperparameters should be accurately estimated while training DRL algorithms, which is one of the key challenges that we attempt to address. This paper employs a swarm-based optimization algorithm, namely the Whale Optimization Algorithm (WOA), for optimizing the hyperparameters of the Deep Deterministic Policy Gradient (DDPG) algorithm to achieve the optimum control strategy in an autonomous driving control problem. DDPG is capable of handling complex environments, which contain continuous spaces for actions. To evaluate the proposed algorithm, the Open Racing Car Simulator (TORCS), a realistic autonomous driving simulation environment, was chosen to its ease of design and implementation. Using TORCS, the DDPG agent with optimized hyperparameters was compared with a DDPG agent with reference hyperparameters. The experimental results showed that the DDPG's hyperparameters optimization leads to maximizing the total rewards, along with testing episodes and maintaining a stable driving policy.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] Reinforcement Learning and Deep Learning Based Lateral Control for Autonomous Driving
    Li, Dong
    Zhao, Dongbin
    Zhang, Qichao
    Chen, Yaran
    IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE, 2019, 14 (02) : 83 - 98
  • [2] Deep Reinforcement Learning Based Train Driving Optimization
    Huang, Jin
    Zhang, Ende
    Zhang, Jiarui
    Huang, Siguang
    Zhong, Zhihua
    2019 CHINESE AUTOMATION CONGRESS (CAC2019), 2019, : 2375 - 2381
  • [3] Joint resource allocation and security redundancy for autonomous driving based on deep reinforcement learning algorithm
    Zhang, Han
    Liang, Hongbin
    Wang, Lei
    Yao, Yiting
    Lin, Bin
    Zhao, Dongmei
    IET INTELLIGENT TRANSPORT SYSTEMS, 2024, 18 (06) : 1109 - 1120
  • [4] Deep Reinforcement Learning for Autonomous Driving: A Survey
    Kiran, B. Ravi
    Sobh, Ibrahim
    Talpaert, Victor
    Mannion, Patrick
    Al Sallab, Ahmad A.
    Yogamani, Senthil
    Perez, Patrick
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (06) : 4909 - 4926
  • [5] Autonomous Driving for Natural Paths Using an Improved Deep Reinforcement Learning Algorithm
    Tseng, Kuo-Kun
    Yang, Hong
    Wang, Haoyang
    Yung, Kai Leung
    Lin, Regina Fang-Ying
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2022, 58 (06) : 5118 - 5128
  • [6] Path tracking control based on Deep reinforcement learning in Autonomous driving
    Jiang, Le
    Wang, Yafei
    Wang, Lin
    Wu, Jingkai
    2019 3RD CONFERENCE ON VEHICLE CONTROL AND INTELLIGENCE (CVCI), 2019, : 414 - 419
  • [7] Deep Reinforcement Learning for Autonomous Driving based on Safety Experience Replay
    Huang X.
    Cheng Y.
    Yu Q.
    Wang X.
    IEEE Transactions on Cognitive and Developmental Systems, 2024, 16 (06) : 1 - 15
  • [8] Research on Autonomous Driving Perception based on Deep Learning Algorithm
    Zhou, Bolin
    Zheng, Jihu
    Chen, Chen
    Yin, Pei
    Zhai, Yang
    2019 INTERNATIONAL CONFERENCE ON IMAGE AND VIDEO PROCESSING, AND ARTIFICIAL INTELLIGENCE, 2019, 11321
  • [9] Deep Reinforcement Learning with Intervention Module for Autonomous Driving
    Chi, Huicong
    Wang, Ping
    Wang, Chao
    Wang, Xinhong
    2022 IEEE 96TH VEHICULAR TECHNOLOGY CONFERENCE (VTC2022-FALL), 2022,
  • [10] Dynamic Input for Deep Reinforcement Learning in Autonomous Driving
    Huegle, Maria
    Kalweit, Gabriel
    Mirchevska, Branka
    Werling, Moritz
    Boedecker, Joschka
    2019 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2019, : 7566 - 7573