A Zero-One Law for Uniform Diophantine Approximation in Euclidean Norm

被引:7
|
作者
Kleinbock, Dmitry [1 ]
Rao, Anurag [1 ]
机构
[1] Brandeis Univ, Waltham, MA 02454 USA
基金
美国国家科学基金会;
关键词
FLOWS; FORMS;
D O I
10.1093/imrn/rnaa256
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study a norm-sensitive Diophantine approximation problem arising from the work of Davenport and Schmidt on the improvement of Dirichlet's theorem. Its supremum norm case was recently considered by the 1st-named author and Wadleigh [17], and here we extend the set-up by replacing the supremum norm with an arbitrary norm. This gives rise to a class of shrinking target problems for one-parameter diagonal flows on the space of lattices, with the targets being neighborhoods of the critical locus of the suitably scaled norm ball. We use methods from geometry of numbers to generalize a result due to Andersen and Duke [1] on measure zero and uncountability of the set of numbers (in some cases, matrices) for which Minkowski approximation theorem can be improved. The choice of the Euclidean norm on R-2 corresponds to studying geodesics on a hyperbolic surface, which visit a decreasing family of balls. An application of the dynamical Borel-Cantelli lemma of Maucourant [25] produces, given an approximation function psi, a zero-one law for the set of alpha is an element of R such that for all large enough t the 2 inequality (alpha q-p/psi(t))(2) + (q/t)(2) < 2/root 3 has non-trivial integer solutions.
引用
收藏
页码:5617 / 5657
页数:41
相关论文
共 50 条
  • [1] ZERO-ONE LAWS IN SIMULTANEOUS AND MULTIPLICATIVE DIOPHANTINE APPROXIMATION
    Li, Liangpan
    MATHEMATIKA, 2013, 59 (02) : 321 - 332
  • [2] A note on zero-one laws in metrical Diophantine approximation
    Beresnevich, Victor
    Velani, Sanju
    ACTA ARITHMETICA, 2008, 133 (04) : 363 - 374
  • [3] On a Zero-One Law for the Norm Process of Transient Random Walk
    Matsumoto, Ayako
    Yano, Kouji
    SEMINAIRE DE PROBABILITES XLIII, 2011, 2006 : 105 - 126
  • [4] ON A ZERO-ONE LAW
    BARTFAI, P
    REVESZ, P
    ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1967, 7 (01): : 43 - &
  • [5] ZERO-ONE LAW
    BLUM, JR
    PATHAK, PK
    ANNALS OF MATHEMATICAL STATISTICS, 1972, 43 (03): : 1008 - &
  • [6] Strictly balanced uniform hypergraphs and generalizations of Zero-One Law
    Matushkin, A. D.
    Popova, S. N.
    DISCRETE MATHEMATICS, 2022, 345 (06)
  • [7] AN APPROXIMATE ZERO-ONE LAW
    RUSSO, L
    ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1982, 61 (01): : 129 - 139
  • [8] A GEOMETRIC ZERO-ONE LAW
    Gilman, Robert H.
    Gurevich, Yuri
    Miasnikov, Alexei
    JOURNAL OF SYMBOLIC LOGIC, 2009, 74 (03) : 929 - 938
  • [9] Variation on the zero-one law
    Blass, A
    Gurevich, Y
    Kreinovich, V
    Longpre, L
    INFORMATION PROCESSING LETTERS, 1998, 67 (01) : 29 - 30
  • [10] ON RUSSOS APPROXIMATE ZERO-ONE LAW
    TALAGRAND, M
    ANNALS OF PROBABILITY, 1994, 22 (03): : 1576 - 1587