A GEOMETRIC ZERO-ONE LAW

被引:2
|
作者
Gilman, Robert H. [1 ]
Gurevich, Yuri [2 ]
Miasnikov, Alexei [3 ]
机构
[1] Stevens Inst Technol, Dept Math Sci, Hoboken, NJ 07030 USA
[2] Microsoft Res, Redmond, WA 98052 USA
[3] McGill Univ, Dept Math & Stat, Montreal, PQ H3A 2K6, Canada
关键词
Finite structure; zero-one law; percolation;
D O I
10.2178/jsl/1245158092
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Each relational structure X has an associated Gaifman graph. which endows X with the properties of a graph. If x is an element of X, let B(n)(x) be the ball of radius n around x. Suppose that X is infinite. connected and of bounded degree. A first-order sentence phi in the language of X is almost surely true (resp. a.s. false) for finite substructures of X if for every x is an element of X, the fraction of substructures of B(n)(x) satisfying phi approaches 1 (resp. 0) as n approaches infinity Suppose further that, for every finite substructure, X has a disjoint isomorphic substructure. Then every phi is a.s. true or a.s. false for finite substructures of X. This is one form of the geometric zero-one law. We formulate it also in a form that does not mention the ambient infinite structure. In addition, we investigate various questions related to the geometric zero-one law.
引用
收藏
页码:929 / 938
页数:10
相关论文
共 50 条
  • [1] A GEOMETRIC PROOF OF A ZERO-ONE LAW
    FEYEL, D
    DELAPRADELLE, A
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1993, 316 (03): : 229 - 232
  • [2] ON A ZERO-ONE LAW
    BARTFAI, P
    REVESZ, P
    [J]. ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1967, 7 (01): : 43 - &
  • [3] ZERO-ONE LAW
    BLUM, JR
    PATHAK, PK
    [J]. ANNALS OF MATHEMATICAL STATISTICS, 1972, 43 (03): : 1008 - &
  • [4] AN APPROXIMATE ZERO-ONE LAW
    RUSSO, L
    [J]. ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1982, 61 (01): : 129 - 139
  • [5] Variation on the zero-one law
    Blass, A
    Gurevich, Y
    Kreinovich, V
    Longpre, L
    [J]. INFORMATION PROCESSING LETTERS, 1998, 67 (01) : 29 - 30
  • [6] The zero-one law holds for RPP
    van Melkebeek, D
    [J]. THEORETICAL COMPUTER SCIENCE, 2000, 244 (1-2) : 283 - 288
  • [7] ON RUSSOS APPROXIMATE ZERO-ONE LAW
    TALAGRAND, M
    [J]. ANNALS OF PROBABILITY, 1994, 22 (03): : 1576 - 1587
  • [8] ZERO-ONE LAW FOR STATIONARY SEQUENCES
    TANNY, D
    [J]. ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1974, 30 (02): : 139 - 148
  • [9] ZERO-ONE LAW FOR BOOLEAN ALGEBRAS
    MACZYNSKI, MJ
    PATHAK, PK
    [J]. BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1978, 26 (02): : 175 - 179
  • [10] Zero-one k-law
    Zhukovskii, Maksim
    [J]. DISCRETE MATHEMATICS, 2012, 312 (10) : 1670 - 1688