Strictly balanced uniform hypergraphs and generalizations of Zero-One Law

被引:2
|
作者
Matushkin, A. D. [1 ]
Popova, S. N. [2 ,3 ]
机构
[1] Moscow Inst Phys & Technol, Lab Adv Combinator & Network Applicat, Dolgoprudnyi, Russia
[2] Moscow MV Lomonosov State Univ, Lab Adv Combinator & Network Applicat, Dolgoprudnyi, Russia
[3] Natl Res Univ, Higher Sch Econ, Moscow, Russia
关键词
Strictly balanced hypergraph; Random hypergraph; First-order logic; Zero-One Law; GRAPHS; SPECTRA; NUMBER;
D O I
10.1016/j.disc.2022.112835
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work we describe the spectra of all rational numbers that could be a density of a strictly balanced uniform hypergraph. We also introduce some specific constructions of strictly balanced uniform hypergraphs, and exploit them to generalize some results about Zero-One Law and Zero-One k-Law to the case of random uniform hypergraphs. (C) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] ON A ZERO-ONE LAW
    BARTFAI, P
    REVESZ, P
    ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1967, 7 (01): : 43 - &
  • [2] ZERO-ONE LAW
    BLUM, JR
    PATHAK, PK
    ANNALS OF MATHEMATICAL STATISTICS, 1972, 43 (03): : 1008 - &
  • [3] A Zero-One Law for Uniform Diophantine Approximation in Euclidean Norm
    Kleinbock, Dmitry
    Rao, Anurag
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2022, 2022 (08) : 5617 - 5657
  • [4] AN APPROXIMATE ZERO-ONE LAW
    RUSSO, L
    ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1982, 61 (01): : 129 - 139
  • [5] A GEOMETRIC ZERO-ONE LAW
    Gilman, Robert H.
    Gurevich, Yuri
    Miasnikov, Alexei
    JOURNAL OF SYMBOLIC LOGIC, 2009, 74 (03) : 929 - 938
  • [6] Variation on the zero-one law
    Blass, A
    Gurevich, Y
    Kreinovich, V
    Longpre, L
    INFORMATION PROCESSING LETTERS, 1998, 67 (01) : 29 - 30
  • [7] ON RUSSOS APPROXIMATE ZERO-ONE LAW
    TALAGRAND, M
    ANNALS OF PROBABILITY, 1994, 22 (03): : 1576 - 1587
  • [8] The zero-one law holds for RPP
    van Melkebeek, D
    THEORETICAL COMPUTER SCIENCE, 2000, 244 (1-2) : 283 - 288
  • [9] First-order zero-one law for the uniform model of the random graph
    Zhukovskii, M. E.
    Sveshnikov, N. M.
    SBORNIK MATHEMATICS, 2020, 211 (07) : 956 - 966
  • [10] ZERO-ONE LAW FOR STATIONARY SEQUENCES
    TANNY, D
    ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1974, 30 (02): : 139 - 148