The phase transition in the ultrametric ensemble and local stability of Dyson Brownian motion

被引:18
|
作者
von Soosten, Per [1 ]
Warzel, Simone [1 ]
机构
[1] Tech Univ Munich, Zentrum Math, Munich, Germany
来源
关键词
Dyson Brownian motion; localization transition; local statistics; ultrametric ensemble; DENSITY-OF-STATES; RENORMALIZATION-GROUP ANALYSIS; SCALING PROPERTIES; LOCALIZATION; MODEL; UNIVERSALITY; EIGENVALUES; STATISTICS; MATRICES;
D O I
10.1214/18-EJP197
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study the ultrametric random matrix ensemble, whose independent entries have variances decaying exponentially in the metric induced by the tree topology on N, and map out the entire localization regime in terms of eigenfunction localization and Poisson statistics. Our results complement existing works on complete delocalization and random matrix universality, thereby proving the existence of a phase transition in this model. In the simpler case of the Rosenzweig-Porter model, the analysis yields a complete characterization of the transition in the local statistics. The proofs are based on the flow of the resolvents of matrices with a random diagonal component under Dyson Brownian motion, for which we establish submicroscopic stability results for short times. These results go beyond norm-based continuity arguments for Dyson Brownian motion and complement the existing analysis after the local equilibration time.
引用
收藏
页数:24
相关论文
共 50 条
  • [21] Non-crossing Brownian Paths and Dyson Brownian Motion Under a Moving Boundary
    Tristan Gautié
    Pierre Le Doussal
    Satya N. Majumdar
    Grégory Schehr
    Journal of Statistical Physics, 2019, 177 : 752 - 805
  • [22] Integral kernels on complex symmetric spaces and for the Dyson Brownian Motion
    Graczyk, P.
    Sawyer, P.
    MATHEMATISCHE NACHRICHTEN, 2022, 295 (07) : 1378 - 1405
  • [23] Non-crossing Brownian Paths and Dyson Brownian Motion Under a Moving Boundary
    Gautie, Tristan
    Le Doussal, Pierre
    Majumdar, Satya N.
    Schehr, Gregory
    JOURNAL OF STATISTICAL PHYSICS, 2019, 177 (05) : 752 - 805
  • [24] Random functions via Dyson Brownian Motion: progress and problems
    Wang, Gaoyuan
    Battefeld, Thorsten
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2016, (09):
  • [25] Edge rigidity of Dyson Brownian motion with general initial data
    Aggarwal, Amol
    Huang, Jiaoyang
    ELECTRONIC JOURNAL OF PROBABILITY, 2024, 29
  • [26] ON THE LOCAL TIME OF THE BROWNIAN MOTION
    Takacs, Lajos
    ANNALS OF APPLIED PROBABILITY, 1995, 5 (03): : 741 - 756
  • [27] MAXIMUM OF DYSON BROWNIAN MOTION AND NON-COLLIDING SYSTEMS WITH A BOUNDARY
    Borodin, Alexei
    Ferrari, Patrik L.
    Praehofer, Michael
    Sasamoto, Tomohiro
    Warren, Jon
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2009, 14 : 486 - 494
  • [28] A Dyson Brownian Motion Model for Weak Measurements in Chaotic Quantum Systems
    Gerbino, Federico
    Le Doussal, Pierre
    Giachetti, Guido
    De Luca, Andrea
    QUANTUM REPORTS, 2024, 6 (02): : 200 - 230
  • [29] Correlations for the circular Dyson brownian motion model with Poisson initial conditions
    Forrester, PJ
    Nagao, T
    NUCLEAR PHYSICS B, 1998, 532 (03) : 733 - 752
  • [30] The infinite Dyson Brownian motion with β=2 does not have a spectral gap
    Suzuki, Kohei
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2025, 57 (02) : 426 - 431