Pitchfork Bifurcation of a Class of Discrete Dynamical Systems

被引:0
|
作者
Chin Hee, Pah [1 ]
机构
[1] Int Islamic Univ Malaysia, Fac Sci, Kuantan, Malaysia
关键词
COMPETING INTERACTIONS; ISING-MODEL; PHASE; TREES;
D O I
10.1063/1.4972161
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A class of discrete dynamical systems is introduced to unify various dynamical systems that appeared in the study of phase transition phenomenon of Ising model on the Cayley tree. We give an alternative method to study the stable fixed points of these dynamical systems. The regions of non-uniqueness of stable fixed point and single stable fixed point are immediately obtained. All the previous results could be derived using this criterion.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Hybrid control of period-doubling bifurcation and chaos in discrete nonlinear dynamical systems
    Luo, XS
    Chen, GR
    Wang, BH
    Fang, JQ
    CHAOS SOLITONS & FRACTALS, 2003, 18 (04) : 775 - 783
  • [42] Calculation of Local Bifurcation Points in Piecewise Nonlinear Discrete-Time Dynamical Systems
    Tone, Yusuke
    Asahara, Hiroyuki
    Ito, Daisuke
    Ueta, Tetsushi
    Aihara, Kazuyuki
    Kousaka, Takuji
    ELECTRONICS AND COMMUNICATIONS IN JAPAN, 2016, 99 (03) : 22 - 30
  • [43] Slow passage through a pitchfork bifurcation
    Maree, GJM
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1996, 56 (03) : 889 - 918
  • [44] Pitchfork phase "bifurcation" of isolator stiffness
    Kari, L
    JOURNAL OF SOUND AND VIBRATION, 2002, 251 (02) : 373 - 376
  • [45] Computing multiple pitchfork bifurcation points
    G. Pönisch
    Uwe Schnabel
    Hubert Schwetlick
    Computing, 1997, 59 : 209 - 222
  • [46] Computation of multiple pitchfork bifurcation points
    Ponisch, G
    Schnabel, U
    Schwetlick, H
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1997, 77 : S449 - S452
  • [47] A class of discrete dynamical systems with properties of both cellular automata and L-systems
    Edwards, Roderick
    Maignan, Aude
    NATURAL COMPUTING, 2020, 19 (03) : 609 - 641
  • [48] A class of discrete dynamical systems with properties of both cellular automata and L-systems
    Roderick Edwards
    Aude Maignan
    Natural Computing, 2020, 19 : 609 - 641
  • [49] Additive noise destroys a pitchfork bifurcation
    Crauel H.
    Flandoli F.
    Journal of Dynamics and Differential Equations, 1998, 10 (2) : 259 - 274
  • [50] The reversible homoclinic pitchfork bifurcation revisited
    Wagenknecht, T
    EQUADIFF 2003: INTERNATIONAL CONFERENCE ON DIFFERENTIAL EQUATIONS, 2005, : 978 - 983