Computation of multiple pitchfork bifurcation points

被引:0
|
作者
Ponisch, G
Schnabel, U
Schwetlick, H
机构
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK | 1997年 / 77卷
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A point (x*,lambda*) is called a pitchfork bifurcation point of multiplicity p greater than or equal to 1 of the nonlinear system F(z, lambda) = 0, F : R-n x R-1 --> R-n, if rank partial derivative(s)F(x*, lambda*) = n - 1 and if the Ljapunov-Schmidt reduced equation has the normal form g(xi, mu) = +/- xi(2+p) +/- mu xi = 0. It is shown that such points satisfy a minimally extended system G(y) = 0, G : Rn+2--> Rn+2 the dimension n + 2 of which is independent of p. For solving this system, a two-stage Newton-type method is proposed. Numerical tests show the influence on the convergence behavior of the starting point and of the bordering vectors used in the definition of the extended system.
引用
收藏
页码:S449 / S452
页数:4
相关论文
共 50 条
  • [1] Computing multiple pitchfork bifurcation points
    G. Pönisch
    Uwe Schnabel
    Hubert Schwetlick
    Computing, 1997, 59 : 209 - 222
  • [2] Computing multiple pitchfork bifurcation points
    Ponisch, G
    Schnabel, U
    Schwetlick, H
    COMPUTING, 1997, 59 (03) : 209 - 222
  • [3] Computing multiple pitchfork bifurcation points
    Poenisch, G.
    Schnabel, U.
    Schwetlick, H.
    Computing (Vienna/New York), 1997, 59 (03): : 209 - 222
  • [4] The Pitchfork Bifurcation
    Rajapakse, Indika
    Smale, Steve
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2017, 27 (09):
  • [5] An algorithm for the computation of multiple Hopf bifurcation points based on Pade approximants
    Girault, G.
    Guevel, Y.
    Cadou, J. M.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2012, 68 (09) : 1189 - 1206
  • [6] Computation of kinematic paths and bifurcation points
    Kumar, P
    Pellegrino, S
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2000, 37 (46-47) : 7003 - 7027
  • [7] Computation of multiple bifurcation point
    Rezaiee-Pajand, M.
    Vejdani-Noghreiyan, H. R.
    ENGINEERING COMPUTATIONS, 2006, 23 (5-6) : 552 - 565
  • [9] BIFURCATION POINTS COMPUTATION OF THE DIFFUSION REACTION EQUATIONS
    JUNCU, G
    BILDEA, S
    COMPUTERS & CHEMICAL ENGINEERING, 1992, 16 (12) : 1059 - 1062
  • [10] A new approach for the computation of hopf bifurcation points
    Rui-song Y.E.
    Applied Mathematics and Mechanics (English Edition), 2000, 21 (11) : 1300 - 1307