Safe Learning for Uncertainty-Aware Planning via Interval MDP Abstraction

被引:9
|
作者
Jiang, Jesse [1 ]
Zhao, Ye [2 ]
Coogan, Samuel [1 ,3 ]
机构
[1] Georgia Inst Technol, Sch Elect & Comp Engn, Atlanta, GA 30332 USA
[2] Georgia Inst Technol, Sch Mech Engn, Atlanta, GA 30332 USA
[3] Georgia Inst Technol, Sch Civil & Environm Engn, Atlanta, GA 30332 USA
来源
基金
美国国家科学基金会;
关键词
Uncertainty; Stochastic systems; Gaussian processes; Planning; Markov processes; Automata; Process control; hybrid systems; Gaussian process learning;
D O I
10.1109/LCSYS.2022.3173993
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We study the problem of refining satisfiability bounds for partially-known stochastic systems against planning specifications defined using syntactically co-safe Linear Temporal Logic (scLTL). We propose an abstraction-based approach that iteratively generates high-confidence Interval Markov Decision Process (IMDP) abstractions of the system from high-confidence bounds on the unknown component of the dynamics obtained via Gaussian process regression. In particular, we develop a synthesis strategy to sample the unknown dynamics by finding paths which avoid specification-violating states using a product IMDP. We further provide a heuristic to choose among various candidate paths to maximize the information gain. Finally, we propose an iterative algorithm to synthesize a satisfying control policy for the product IMDP system. We demonstrate our work with a case study on mobile robot navigation.
引用
收藏
页码:2641 / 2646
页数:6
相关论文
共 50 条
  • [31] A POMDP Treatment of Vehicle-Pedestrian Interaction: Implicit Coordination via Uncertainty-Aware Planning
    Hsu, Ya-Chuan
    Gopalswamy, Swaminathan
    Saripalli, Srikanth
    Shell, Dylan A.
    2020 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2020, : 1984 - 1991
  • [32] Driving Environment Uncertainty-Aware Motion Planning for Autonomous Vehicles
    Tang, Xiaolin
    Yang, Kai
    Wang, Hong
    Yu, Wenhao
    Yang, Xin
    Liu, Teng
    Li, Jun
    CHINESE JOURNAL OF MECHANICAL ENGINEERING, 2022, 35 (01)
  • [33] Uncertainty-aware autonomous sensing with deep reinforcement learning
    Murad, Abdulmajid
    Kraemer, Frank Alexander
    Bach, Kerstin
    Taylor, Gavin
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2024, 156 : 242 - 253
  • [34] Driving Environment Uncertainty-Aware Motion Planning for Autonomous Vehicles
    Xiaolin Tang
    Kai Yang
    Hong Wang
    Wenhao Yu
    Xin Yang
    Teng Liu
    Jun Li
    Chinese Journal of Mechanical Engineering, 2022, 35 (05) : 317 - 330
  • [35] Uncertainty-Aware Manipulation Planning Using Gravity and Environment Geometry
    von Drigalski, Felix
    Kasaura, Kazumi
    Beltran-Hernandez, Cristian C.
    Hamaya, Masashi
    Tanaka, Kazutoshi
    Matsubara, Takamitsu
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2022, 7 (04) : 11942 - 11949
  • [36] Uncertainty-Aware Procurement of Flexibilities for Electrical Grid Operational Planning
    Bessa, Ricardo J.
    Moaidi, Ferinar
    Viana, Joao
    Andrade, Jose R.
    IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, 2024, 15 (02) : 789 - 802
  • [37] Learning Uncertainty-Aware Temporally-Extended Actions
    Lee, Joongkyu
    Park, Seung Joon
    Tang, Yunhao
    Oh, Min-Hwan
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 12, 2024, : 13391 - 13399
  • [38] How to Assess Uncertainty-Aware Frameworks for Power System Planning?
    Spyrou, Elina
    Hobbs, Ben
    Chattopadhyay, Deb
    Mukhi, Neha
    IEEE Transactions on Energy Markets, Policy and Regulation, 2024, 2 (04): : 436 - 448
  • [39] Conformal Prediction for Uncertainty-Aware Planning with Diffusion Dynamics Model
    Sun, Jiankai
    Jiang, Yiqi
    Qiu, Jianing
    Nobel, Parth Talpur
    Kochenderfer, Mykel
    Schwager, Mac
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [40] Uncertainty-aware complementary label queries for active learning
    Liu, Shengyuan
    Chen, Ke
    Hu, Tianlei
    Mao, Yunqing
    FRONTIERS OF INFORMATION TECHNOLOGY & ELECTRONIC ENGINEERING, 2023, 24 (10) : 1497 - 1503