Safe Learning for Uncertainty-Aware Planning via Interval MDP Abstraction

被引:9
|
作者
Jiang, Jesse [1 ]
Zhao, Ye [2 ]
Coogan, Samuel [1 ,3 ]
机构
[1] Georgia Inst Technol, Sch Elect & Comp Engn, Atlanta, GA 30332 USA
[2] Georgia Inst Technol, Sch Mech Engn, Atlanta, GA 30332 USA
[3] Georgia Inst Technol, Sch Civil & Environm Engn, Atlanta, GA 30332 USA
来源
基金
美国国家科学基金会;
关键词
Uncertainty; Stochastic systems; Gaussian processes; Planning; Markov processes; Automata; Process control; hybrid systems; Gaussian process learning;
D O I
10.1109/LCSYS.2022.3173993
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We study the problem of refining satisfiability bounds for partially-known stochastic systems against planning specifications defined using syntactically co-safe Linear Temporal Logic (scLTL). We propose an abstraction-based approach that iteratively generates high-confidence Interval Markov Decision Process (IMDP) abstractions of the system from high-confidence bounds on the unknown component of the dynamics obtained via Gaussian process regression. In particular, we develop a synthesis strategy to sample the unknown dynamics by finding paths which avoid specification-violating states using a product IMDP. We further provide a heuristic to choose among various candidate paths to maximize the information gain. Finally, we propose an iterative algorithm to synthesize a satisfying control policy for the product IMDP system. We demonstrate our work with a case study on mobile robot navigation.
引用
收藏
页码:2641 / 2646
页数:6
相关论文
共 50 条
  • [21] An Uncertainty-Aware Online Planning Algorithm for the Sustainable Electrification of Festivals
    Pappi, Iliana
    Baarslag, Tim
    Kaisers, Michael
    Paterakis, Nikolaos G.
    2018 INTERNATIONAL CONFERENCE ON SMART ENERGY SYSTEMS AND TECHNOLOGIES (SEST), 2018,
  • [22] Uncertainty-Aware Prognosis via Deep Gaussian Process
    Biggio, Luca
    Wieland, Alexander
    Chao, Manuel Arias
    Kastanis, Iason
    Fink, Olga
    IEEE ACCESS, 2021, 9 : 123517 - 123527
  • [23] Uncertainty-aware machine learning for high energy physics
    Ghosh, Aishik
    Nachman, Benjamin
    Whiteson, Daniel
    PHYSICAL REVIEW D, 2021, 104 (05)
  • [24] Training Uncertainty-Aware Classifiers with Conformalized Deep Learning
    Einbinder, Bat-Sheva
    Romano, Yaniv
    Sesia, Matteo
    Zhou, Yanfei
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35, NEURIPS 2022, 2022,
  • [25] Uncertainty-Aware Data Aggregation for Deep Imitation Learning
    Cui, Yuchen
    Isele, David
    Niekum, Scott
    Fujimura, Kikuo
    2019 INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2019, : 761 - 767
  • [26] Uncertainty-Aware Online Merge Planning with Learned Driver Behavior
    Kruse, Liam A.
    Yel, Esen
    Senanayake, Ransalu
    Kochenderfer, Mykel J.
    2022 IEEE 25TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2022, : 1202 - 1207
  • [27] Uncertainty-Aware Health Diagnostics via Class-Balanced Evidential Deep Learning
    Xia, Tong
    Dang, Ting
    Han, Jing
    Qendro, Lorena
    Mascolo, Cecilia
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2024, 28 (11) : 6417 - 6428
  • [28] Driving Environment Uncertainty-Aware Motion Planning for Autonomous Vehicles
    Xiaolin Tang
    Kai Yang
    Hong Wang
    Wenhao Yu
    Xin Yang
    Teng Liu
    Jun Li
    Chinese Journal of Mechanical Engineering, 2022, 35
  • [29] Learning an Uncertainty-Aware Object Detector for Autonomous Driving
    Meyer, Gregory P.
    Thakurdesai, Niranjan
    2020 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2020, : 10521 - 10527
  • [30] Uncertainty-Aware Dissimilarity Measures for Interval-Valued Fuzzy Sets
    Torres-Manzanera, Emilio
    Kral, Pavol
    Janis, Vladimir
    Montes, Susana
    INTERNATIONAL JOURNAL OF UNCERTAINTY FUZZINESS AND KNOWLEDGE-BASED SYSTEMS, 2020, 28 (05) : 757 - 768