Variational Measurement Update for Extended Object Tracking Using Gaussian Processes

被引:9
|
作者
Kumru, Murat [1 ]
Koksal, Hilal [1 ]
Ozkan, Emre [1 ]
机构
[1] Middle East Tech Univ, Dept Elect & Elect Engn, TR-06800 Ankara, Turkey
关键词
Extended target tracking; Gaussian process; variational bayes; TARGET TRACKING;
D O I
10.1109/LSP.2021.3060316
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present an alternative inference framework for the Gaussian process-based extended object tracking (GPEOT) models. The method provides an approximate solution to the Bayesian filtering problem in GPEOT by relying on a new measurement update, which we derive using variational Bayes techniques. The resulting algorithm effectively computes approximate posterior densities of the kinematic and the extent states. We conduct various experiments on simulated and real data and examine the performance compared with a reference method, which employs an extended Kalman filter for inference. The proposed algorithm significantly improves the accuracy of both the kinematic and the extent estimates and proves robust against model uncertainties.
引用
收藏
页码:538 / 542
页数:5
相关论文
共 50 条
  • [1] Multiple Extended Object Tracking Using Gaussian Processes
    Hirscher, Tobias
    Scheel, Alexander
    Reuter, Stephan
    Dietmayer, Klaus
    [J]. 2016 19TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2016, : 868 - 875
  • [2] 3D Extended Object Tracking Using Recursive Gaussian Processes
    Kumru, Murat
    Ozkan, Emre
    [J]. 2018 21ST INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2018, : 259 - 266
  • [3] A Variational Measurement Update for Extended Target Tracking With Random Matrices
    Orguner, Umut
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2012, 60 (07) : 3827 - 3834
  • [4] Extended Target Tracking Using Gaussian Processes
    Wahlstrom, Niklas
    Ozkan, Emre
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2015, 63 (16) : 4165 - 4178
  • [5] Three-Dimensional Extended Object Tracking and Shape Learning Using Gaussian Processes
    Kumru, Murat
    Ozkan, Emre
    [J]. IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2021, 57 (05) : 2795 - 2814
  • [6] Distributed Variational Measurement Update for Extended Target Tracking With Random Matrix
    Jiao, Qinqin
    Yang, Xiaojun
    [J]. IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2024, 60 (04) : 3792 - 3806
  • [7] Dynamic Object Tracking and 3D Surface Estimation using Gaussian Processes and Extended Kalman Filter
    Ebert, Felix
    Wuensche, Hans-Joachim
    [J]. 2019 IEEE INTELLIGENT TRANSPORTATION SYSTEMS CONFERENCE (ITSC), 2019, : 1122 - 1127
  • [8] Extended Object Tracking Based on Support Functions and Extended Gaussian Images
    Sun, Lifan
    Li, X. Rong
    Lan, Jian
    [J]. 2013 16TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2013, : 1526 - 1533
  • [9] Iris Tracking Using Extended Object Tracking
    Dunau, Patrick
    Beyerer, Juergen
    [J]. 2016 19TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2016, : 1735 - 1742
  • [10] EXTENDED OBJECT TRACKING USING HIERARCHICAL TRUNCATION MEASUREMENT MODEL WITH AUTOMOTIVE RADAR
    Xia, Y.
    Wang, P.
    Berniorp, K.
    Koike-Akino, T.
    Mansour, H.
    Pajovic, M.
    Boufounos, P.
    Orlik, P., V
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 4900 - 4904