Iris Tracking Using Extended Object Tracking

被引:0
|
作者
Dunau, Patrick [1 ]
Beyerer, Juergen [2 ,3 ]
机构
[1] Fraunhofer Inst Optron Syst Technol & Image Explo, IOSB, Gutleuthausstr 1, D-76275 Ettlingen, Germany
[2] Karlsruhe Inst Technol, Inst Anthropomat & Robot, Adenauerring 4, D-76131 Karlsruhe, Germany
[3] Fraunhofer Inst Optron Syst Technol & Image Explo, IOSB, Fraunhoferstr 1, D-76131 Karlsruhe, Germany
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In the emerging field of hands free computer control the human eye has an extraordinary important role to play. In order to detect commands and actions communicated by the human eye, meaningful features are sought for. The iris provides high contrast, when compared to the sclera. Due to this fact the segmentation of the iris in the image of a face is fairly easy. This paper proposes an algorithm based on extended object tracking to trace the iris of the human eye. Based on a segmentation algorithm to find the boundary of the iris and together with simple model of iris motion an Unscented Kalman Filter (UKF) is used to track the iris. The measurements are incorporated using a greedy association model (GAM) to relate the measurement points to the extended object (the iris). We will show that the iris tracking algorithm is reliable and stable, even in presence of occlusions and reflections, e.g. when the person wears glasses. The paper provides a tracking algorithm that can be used for hands free computer control.
引用
收藏
页码:1735 / 1742
页数:8
相关论文
共 50 条
  • [1] Extended object tracking using particle techniques
    Vermaak, J
    Ikoma, N
    Godsill, SJ
    [J]. 2004 IEEE AEROSPACE CONFERENCE PROCEEDINGS, VOLS 1-6, 2004, : 1876 - 1885
  • [2] Extended Object Tracking Using Automotive Radar
    Cao, Xiaomeng
    Lan, Jian
    Li, X. Rong
    Liu, Yu
    [J]. 2018 21ST INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2018, : 1738 - 1745
  • [3] Pedestrian tracking using Velodyne data - stochastic optimization for extended object tracking
    Granstrom, Karl
    Reuter, Stephan
    Fatemi, Maryam
    Svensson, Lennart
    [J]. 2017 28TH IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV 2017), 2017, : 39 - 46
  • [4] Group and extended object tracking
    Salmond, DJ
    Gordon, NJ
    [J]. SIGNAL AND DATA PROCESSING OF SMALL TARGETS 1999, 1999, 3809 : 284 - 296
  • [5] Extended object tracking using Monte Carlo methods
    Angelova, Donka
    Mihaylova, Lyudmila
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2008, 56 (02) : 825 - 832
  • [6] Extended object tracking using mixture Kalman filtering
    Angelova, Donka
    Mihaylova, Lyudmila
    [J]. NUMERICAL METHODS AND APPLICATIONS, 2007, 4310 : 122 - 130
  • [7] Extended Object Tracking using a Radar Resolution Model
    Hammarstrand, Lars
    Svensson, Lennart
    Sandblom, Fredrik
    Sorstedt, Joakim
    [J]. IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2012, 48 (03) : 2371 - 2386
  • [8] Multiple Extended Object Tracking Using Gaussian Processes
    Hirscher, Tobias
    Scheel, Alexander
    Reuter, Stephan
    Dietmayer, Klaus
    [J]. 2016 19TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2016, : 868 - 875
  • [9] Extended Object Tracking Using Random Matrix With Skewness
    Zhang, Le
    Lan, Jian
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2020, 68 : 5107 - 5121
  • [10] EXTENDED KALMAN FILTER FOR EXTENDED OBJECT TRACKING
    Yang, Shishan
    Baum, Marcus
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2017, : 4386 - 4390