Variational Measurement Update for Extended Object Tracking Using Gaussian Processes

被引:9
|
作者
Kumru, Murat [1 ]
Koksal, Hilal [1 ]
Ozkan, Emre [1 ]
机构
[1] Middle East Tech Univ, Dept Elect & Elect Engn, TR-06800 Ankara, Turkey
关键词
Extended target tracking; Gaussian process; variational bayes; TARGET TRACKING;
D O I
10.1109/LSP.2021.3060316
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present an alternative inference framework for the Gaussian process-based extended object tracking (GPEOT) models. The method provides an approximate solution to the Bayesian filtering problem in GPEOT by relying on a new measurement update, which we derive using variational Bayes techniques. The resulting algorithm effectively computes approximate posterior densities of the kinematic and the extent states. We conduct various experiments on simulated and real data and examine the performance compared with a reference method, which employs an extended Kalman filter for inference. The proposed algorithm significantly improves the accuracy of both the kinematic and the extent estimates and proves robust against model uncertainties.
引用
收藏
页码:538 / 542
页数:5
相关论文
共 50 条
  • [31] Extended Object Tracking Using Random Matrix With Skewness
    Zhang, Le
    Lan, Jian
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2020, 68 : 5107 - 5121
  • [32] Scaling Gaussian Processes with Derivative Information Using Variational Inference
    Padidar, Misha
    Zhu, Xinran
    Huang, Leo
    Gardner, Jacob R.
    Bindel, David
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [33] Visual object tracking using Gaussian process and sparse representation
    Gozlou, Samira Ghareh
    Gozlou, Morteza Ghareh
    [J]. INTERNATIONAL JOURNAL OF APPLIED PATTERN RECOGNITION, 2015, 2 (02) : 128 - 141
  • [34] Using Gaussian processes for human tracking and action classification
    Raskin, Leonid
    Rivlin, Ehud
    Rudzsky, Michael
    [J]. ADVANCES IN VISUAL COMPUTING, PT I, 2007, 4841 : 36 - +
  • [35] A Gaussian Process Approach for Extended Object Tracking with Random Shapes and for Dealing with Intractable Likelihoods
    Aftab, Waqas
    De Freitas, Allan
    Arvaneh, Mahnaz
    Mihaylova, Lyudmila
    [J]. 2017 22ND INTERNATIONAL CONFERENCE ON DIGITAL SIGNAL PROCESSING (DSP), 2017,
  • [36] Gaussian processes based extended target tracking in polar coordinates with input uncertainty
    Guo, Yunfei
    Yang, Dongsheng
    Ren, Lei
    Yan, Lei
    [J]. EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2022, 2022 (01)
  • [37] Gaussian processes based extended target tracking in polar coordinates with input uncertainty
    Yunfei Guo
    Dongsheng Yang
    Lei Ren
    Lei Yan
    [J]. EURASIP Journal on Advances in Signal Processing, 2022
  • [38] Kalman Filter Based Extended Object Tracking with a Gaussian Mixture Spatial Distribution Model
    Thormann, Kolja
    Yang, Shishan
    Baum, Marcus
    [J]. 2021 IEEE INTELLIGENT VEHICLES SYMPOSIUM WORKSHOPS (IV WORKSHOPS), 2021, : 293 - 298
  • [39] Gaussian Processes for Object Categorization
    Kapoor, Ashish
    Grauman, Kristen
    Urtasun, Raquel
    Darrell, Trevor
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 2010, 88 (02) : 169 - 188
  • [40] Gaussian Processes for Object Categorization
    Ashish Kapoor
    Kristen Grauman
    Raquel Urtasun
    Trevor Darrell
    [J]. International Journal of Computer Vision, 2010, 88 : 169 - 188