Implementation of a quantum corrections in a 3D parallel drift-diffusion simulator

被引:2
|
作者
Garcia-Loureiro, Antonio J. [1 ]
Kaina, Karol [2 ]
Asenov, Asen [2 ]
机构
[1] Univ Santiago de Compostela, Dept Elect & Comp, Santiago De Compostela 15782, Spain
[2] Univ Glasgow, Dept Elect & Elect Engn, Dev Modelling Grp, Glasgow G12 8LT, Lanark, Scotland
关键词
density gradient; drift-diffusion approach; 3D parallel simulation; MOSFET;
D O I
10.1109/SCED.2007.383995
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We describe an implementation of density-gradient quantum corrections in a 3D drift-diffusion (D-D) semiconductor simulator based on finite element method. Mesh efficiency of the 3D semiconductor device simulator with quantum mechanical corrections is achieved by parallelisation of the code for a memory distributed multiprocessor environment. The Poisson equation, the current continuity equation, and the density gradient equation with an appropriate finite element discretisation have to be solved iteratively. Moreover, parallel algorithms are employed to speed up the self-consistent solution. In order to test our 3D semiconductor device simulator, we have carried out a careful calibration against experimental IN characteristics of a 67 run Si MOSFET achieving an excellent agreement. Then we demonstrate a relative impact of quantum mechanical corrections in this device.
引用
收藏
页码:60 / +
页数:2
相关论文
共 50 条
  • [31] CHARACTERIZATION OF SUBMICROMETER GAAS-MESFET USING DRIFT-DIFFUSION SIMULATOR
    FARDI, HZ
    COMPEL-THE INTERNATIONAL JOURNAL FOR COMPUTATION AND MATHEMATICS IN ELECTRICAL AND ELECTRONIC ENGINEERING, 1993, 12 (04) : 361 - 375
  • [32] Parallel domain decomposition methods for a quantum-corrected drift-diffusion model for MOSFET devices
    Sho, Shohiro
    Odanaka, Shinji
    COMPUTER PHYSICS COMMUNICATIONS, 2019, 237 : 8 - 16
  • [33] Drift-Diffusion InGaN/GaN Solar Cell Simulator with Optical Management
    Fang, Y.
    Guo, D.
    Fischer, A.
    Vadiee, E.
    Zhang, C.
    Williams, J.
    Goodnick, S. M.
    Vasileska, D.
    2017 IEEE 44TH PHOTOVOLTAIC SPECIALIST CONFERENCE (PVSC), 2017, : 1603 - 1605
  • [34] Group analysis of the drift-diffusion model for quantum semiconductors
    Ibragimov, N. H.
    Khamitova, R.
    Avdonina, E. D.
    Galiakberova, L. R.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2015, 20 (01) : 74 - 78
  • [35] SEMICLASSICAL LIMIT FOR BIPOLAR QUANTUM DRIFT-DIFFUSION MODEL
    Ju Qiangchang
    Chen Li
    ACTA MATHEMATICA SCIENTIA, 2009, 29 (02) : 285 - 293
  • [36] New solutions for the quantum drift-diffusion model of semiconductors
    Ramirez, J.
    Tracina, R.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (48)
  • [37] Weak solutions to the stationary quantum drift-diffusion model
    Qiang, Chen
    Ping, Guan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 359 (02) : 666 - 673
  • [38] On the Multidimensional Bipolar Isothermal Quantum Drift-diffusion Model
    Dong, Jianwei
    INTELLIGENT SYSTEM AND APPLIED MATERIAL, PTS 1 AND 2, 2012, 466-467 : 186 - 190
  • [39] Quantum drift-diffusion modeling of spin transport in nanostructures
    Barletti, Luigi
    Mehats, Florian
    JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (05)
  • [40] Existence and semiclassical limit for the quantum drift-diffusion model
    Xiangsheng Xu
    Annali di Matematica Pura ed Applicata, 2014, 193 : 889 - 908