Implementation of a quantum corrections in a 3D parallel drift-diffusion simulator

被引:2
|
作者
Garcia-Loureiro, Antonio J. [1 ]
Kaina, Karol [2 ]
Asenov, Asen [2 ]
机构
[1] Univ Santiago de Compostela, Dept Elect & Comp, Santiago De Compostela 15782, Spain
[2] Univ Glasgow, Dept Elect & Elect Engn, Dev Modelling Grp, Glasgow G12 8LT, Lanark, Scotland
关键词
density gradient; drift-diffusion approach; 3D parallel simulation; MOSFET;
D O I
10.1109/SCED.2007.383995
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We describe an implementation of density-gradient quantum corrections in a 3D drift-diffusion (D-D) semiconductor simulator based on finite element method. Mesh efficiency of the 3D semiconductor device simulator with quantum mechanical corrections is achieved by parallelisation of the code for a memory distributed multiprocessor environment. The Poisson equation, the current continuity equation, and the density gradient equation with an appropriate finite element discretisation have to be solved iteratively. Moreover, parallel algorithms are employed to speed up the self-consistent solution. In order to test our 3D semiconductor device simulator, we have carried out a careful calibration against experimental IN characteristics of a 67 run Si MOSFET achieving an excellent agreement. Then we demonstrate a relative impact of quantum mechanical corrections in this device.
引用
收藏
页码:60 / +
页数:2
相关论文
共 50 条
  • [21] The semiclassical limit in the quantum drift-diffusion model
    Ju, Qiang Chang
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2009, 25 (02) : 253 - 264
  • [22] The Semiclassical Limit in the Quantum Drift-Diffusion Model
    Qiang Chang JUInstitute of Applied Physics and Computational Mathematics
    ActaMathematicaSinica(EnglishSeries), 2009, 25 (02) : 253 - 264
  • [23] Numerical approximation of a quantum drift-diffusion model
    Gallego, S
    Méhats, F
    COMPTES RENDUS MATHEMATIQUE, 2004, 339 (07) : 519 - 524
  • [24] The quasineutral limit in the quantum drift-diffusion equations
    Juengel, Ansgar
    Violet, Ingrid
    ASYMPTOTIC ANALYSIS, 2007, 53 (03) : 139 - 157
  • [25] A universal drift-diffusion simulator and its application to OLED simulations
    Santoni, Francesco
    Brown, Thomas
    Brunetti, Francesca
    Pescetelli, Sara
    Reale, Andrea
    Di Carlo, Aldo
    Maur, Matthias Auf Der
    17TH INTERNATIONAL CONFERENCE ON NUMERICAL SIMULATION OF OPTOELECTRONIC DEVICES NUSOD 2017, 2017, : 103 - 104
  • [26] Coupled 3D master equation and 1D drift-diffusion approach for advanced OLED modeling
    Zeder, Simon
    Kirsch, Christoph
    Aeberhard, Urs
    Bluelle, Balthasar
    Jenatsch, Sandra
    Ruhstaller, Beat
    JOURNAL OF THE SOCIETY FOR INFORMATION DISPLAY, 2020, 28 (05) : 440 - 449
  • [27] SEMICLASSICAL LIMIT FOR BIPOLAR QUANTUM DRIFT-DIFFUSION MODEL
    琚强昌
    陈丽
    ActaMathematicaScientia, 2009, 29 (02) : 285 - 293
  • [28] Quantum energy-transport and drift-diffusion models
    Degond, P
    Méhats, F
    Ringhofer, C
    JOURNAL OF STATISTICAL PHYSICS, 2005, 118 (3-4) : 625 - 667
  • [29] Approximate solutions to the quantum drift-diffusion model of semiconductors
    Romano, V.
    Torrisi, M.
    Tracina, R.
    JOURNAL OF MATHEMATICAL PHYSICS, 2007, 48 (02)
  • [30] Quantum kinetic and drift-diffusion equations for semiconductor superlattices
    Bonilla, LL
    Escobedo, R
    PROGRESS IN INDUSTRIAL MATHEMATICS AT ECMI 2004, 2006, 8 : 109 - 113