Trigonometric identities and volumes of the hyperbolic twist knot cone-manifolds
被引:9
|
作者:
论文数: 引用数:
h-index:
机构:
Ham, Ji-Young
[1
]
Mednykh, Alexander
论文数: 0引用数: 0
h-index: 0
机构:
Sobolev Inst Math, Novosibirsk 630090, Russia
Novosibirsk State Univ, Novosibirsk 630090, Russia
Chelyabinsk State Univ, Chelyabinsk 454001, RussiaHongik Univ, Dept Sci, Seoul, South Korea
Mednykh, Alexander
[2
,3
,4
]
Petrov, Vladimir
论文数: 0引用数: 0
h-index: 0
机构:
Microsoft Corp, Redmond, WA 98052 USAHongik Univ, Dept Sci, Seoul, South Korea
Petrov, Vladimir
[5
]
机构:
[1] Hongik Univ, Dept Sci, Seoul, South Korea
[2] Sobolev Inst Math, Novosibirsk 630090, Russia
[3] Novosibirsk State Univ, Novosibirsk 630090, Russia
[4] Chelyabinsk State Univ, Chelyabinsk 454001, Russia
We calculate the volumes of the hyperbolic twist knot cone-manifolds using the Schlafli formula. Even though general ideas for calculating the volumes of cone-manifolds are around, since there is no concrete calculation written, we present here the concrete calculations. We express the length of the singular locus in terms of the distance between the two axes fixed by two generators. In this way the calculation becomes easier than using the singular locus directly. The volumes of the hyperbolic twist knot cone-manifolds simpler than Stevedore's knot are known. As an application, we give the volumes of the cyclic coverings over the hyperbolic twist knots.
机构:
ECOLE NORMALE SUPER LYON,CNRS UMR 128,UNITE MATH PURES & APPL,F-69364 LYON 07,FRANCEECOLE NORMALE SUPER LYON,CNRS UMR 128,UNITE MATH PURES & APPL,F-69364 LYON 07,FRANCE
Hersonsky, S
Paulin, F
论文数: 0引用数: 0
h-index: 0
机构:
ECOLE NORMALE SUPER LYON,CNRS UMR 128,UNITE MATH PURES & APPL,F-69364 LYON 07,FRANCEECOLE NORMALE SUPER LYON,CNRS UMR 128,UNITE MATH PURES & APPL,F-69364 LYON 07,FRANCE