Volume formulae for fibred cone-manifolds with spherical geometry

被引:0
|
作者
Kolpakov, A. A. [1 ]
机构
[1] Univ Toronto, Toronto, ON M5S 1A1, Canada
关键词
spherical geometry; cone-manifold; Seifert fibration; POLYGONS;
D O I
10.1070/SM8489
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We classify cone-manifold structures on a three-dimensional sphere whose singular set consists of fibres of a Seifert fibration. We describe domains of existence of a spherical structure on these cone-manifolds in terms of cone angles, and obtain explicit analytic formulae for their volumes.
引用
收藏
页码:1693 / 1708
页数:16
相关论文
共 50 条
  • [1] EXAMPLES OF RIGID AND FLEXIBLE SEIFERT FIBRED CONE-MANIFOLDS
    Kolpakov, Alexander
    [J]. GLASGOW MATHEMATICAL JOURNAL, 2013, 55 (02) : 411 - 429
  • [2] On the rigidity of hyperbolic cone-manifolds
    Montcouquiol, G
    [J]. COMPTES RENDUS MATHEMATIQUE, 2005, 340 (09) : 677 - 682
  • [3] Volumes for twist link cone-manifolds
    Derevnin, D
    Mednykh, A
    Mulazzani, M
    [J]. BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2004, 10 : 129 - 145
  • [4] Colored Alexander invariants and cone-manifolds
    Murakami, Jun
    [J]. OSAKA JOURNAL OF MATHEMATICS, 2008, 45 (02) : 541 - 564
  • [5] Geometric inflexibility of hyperbolic cone-manifolds
    Brock, Jeffrey
    Bromberg, Kenneth
    [J]. HYPERBOLIC GEOMETRY AND GEOMETRIC GROUP THEORY, 2017, 73 : 47 - 64
  • [6] Hyperbolic cone-manifolds with large cone-angles
    Souto, J
    [J]. GEOMETRY & TOPOLOGY, 2003, 7 : 789 - 797
  • [7] Rigidity of geometrically finite hyperbolic cone-manifolds
    Bromberg, K
    [J]. GEOMETRIAE DEDICATA, 2004, 105 (01) : 143 - 170
  • [8] AN EXPLICIT VOLUME FORMULA FOR THE LINK 7(3)(2) (alpha; alpha) CONE-MANIFOLDS
    Ham, Ji-Young
    Lee, Joongul
    Mednykh, Alexander
    Rasskazov, Aleksey
    [J]. SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2016, 13 : 1017 - 1025
  • [9] DIFFERENTIAL GEOMETRY OF FIBRED RIEMANNIAN MANIFOLDS
    FARNSWOR.DL
    THOMPSON, AH
    [J]. NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1970, 17 (01): : 189 - &
  • [10] Rigidity of Geometrically Finite Hyperbolic Cone-Manifolds
    K. Bromberg
    [J]. Geometriae Dedicata, 2004, 105 : 143 - 170